1
|
Liu Y, Zhang Y, Pan R, Chen M, Wang X, Kong E, Yu W, Sun Y, Wu F. Lentiviral‑mediated inducible silencing of TLR4 attenuates neuropathic pain in a rat model of chronic constriction injury. Mol Med Rep 2018; 18:5545-5551. [PMID: 30365084 PMCID: PMC6236283 DOI: 10.3892/mmr.2018.9560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
An increasing body of evidence has indicated that spinal microglial Toll-like receptor 4 (TLR4) may serve a significant role in the development and maintenance of neuropathic pain (NP). In the present study, experiments were conducted to evaluate the contribution of a tetracycline inducible lentiviral-mediated delivery system for the expression of TLR4 small interfering (si)RNA to NP in rats with chronic constriction injury (CCI). Behavioral tests, including paw withdrawal latency and paw withdrawal threshold, and biochemical analysis of the spinal cord, including western blotting, reverse transcription-quantitative polymerase chain reaction and ELISA, were conducted following CCI to the sciatic nerve. Intrathecal administration of LvOn-si-TLR4 with doxycycline (Dox) attenuated allodynia and hyperalgesia. Biochemical analysis revealed that the mRNA and proteins levels of TLR4 were unregulated following CCI to the sciatic nerve, which was then blocked by intrathecal administration of LvOn-siTLR4 with Dox. The LvOn-siTLR4 was also demonstrated to have no effect on TLR4 or the pain response without Dox, which indicated that the expression of siRNA was Dox-inducible in the lentivirus delivery system. In conclusion, TLR4 may serve a significant role in neuropathy and the results of the present study provide an inducible lentivirus-mediated siRNA against TLR4 that may serve as a potential novel strategy to be applied in gene therapy for NP in the future.
Collapse
Affiliation(s)
- Yantao Liu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, Zhejiang Zhoushan Hospital, Zhoushan, Zhejiang 316021, P.R. China
| | - Ruirui Pan
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Mo Chen
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xiaoqiang Wang
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Erliang Kong
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Weifeng Yu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Yuming Sun
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Feixiang Wu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
2
|
Wu JG, Xun N, Zeng LJ, Li ZY, Liang YB, Tang H, Ma ZF. Effects of small interfering RNA targeting TLR4 on expressions of adipocytokines in obstructive sleep apnea hyponea syndrome with hypertension in a rat model. J Cell Physiol 2018; 233:6613-6620. [PMID: 29215742 DOI: 10.1002/jcp.26364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
We explored the effects of RNA interference-mediated silencing of TLR4 gene on expressions of adipocytokines in obstructive sleep apnea hyponea syndrome (OSAS) with hypertension in a rat model. Systolic blood pressure of caudal artery and physiological changes were observed when establishing rat models of OSAS with hypertension. Mature rat adipocytes were induced from separated and cultured primary rat adipocytes. To transfect rat mature adipocytes, TLR4 siRNA group and negative control (NC) siRNA group were established. Expressions of TLR4 mRNA of adipocytes were examined after silenced by siRNA by quantitative real-time polymerase chain reaction (qRT-PCR). By enzyme-linked immunosorbent assay (ELISA), expressions of inflammatory cytokines, and adipocytokines of adipocytes were detected. Blood pressure in rat caudal artery was higher in the intermittent hypoxia group than that of the blank control group by 29.87 mmHg, and cardiocytes in the former group showed physiological changes, which indicated successful establishment of rat models of OSAS with hypertension. Red particles could be seen in mature rat adipocytes when stained with Oil Red O. Transfection of TLR4 mRNA was significantly suppressed in the TLR4 siRNA group, which didn't happen in the untransfected control group. Rats in the TLR4 siRNA group had significantly reduced expressions of such inflammatory cytokines as interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and such adipocytokines as visfatin, adiponectin (ADN), and leptin than those in the untransfected control group. RNA interference-mediated silencing of TLR4 gene could regulate occurrence and development of OSAS with hypertension in rats by downregulating expressions of adipocytokines.
Collapse
Affiliation(s)
- Jing-Guo Wu
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Nan Xun
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Li-Jin Zeng
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhen-Yu Li
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yan-Bing Liang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Hao Tang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhong-Fu Ma
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
3
|
He HQ, Wu YX, Nie YJ, Wang J, Ge M, Qian F. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway. Acta Pharmacol Sin 2017; 38:342-350. [PMID: 28112185 DOI: 10.1038/aps.2016.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries.
Collapse
|
4
|
Zhang X, Sun CY, Zhang YB, Guo HZ, Feng XX, Peng SZ, Yuan J, Zheng RB, Chen WP, Su ZR, Huang XD. Kegan Liyan oral liquid ameliorates lipopolysaccharide-induced acute lung injury through inhibition of TLR4-mediated NF-κB signaling pathway and MMP-9 expression. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:91-102. [PMID: 27036629 DOI: 10.1016/j.jep.2016.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kegan Liyan oral liquid (KGLY), a Chinese prescription modified from classic formulas Yin-Qiao-San (from TCM classic Wenbing Tiaobian) and Shen-Jie-San (first mentioned in Shanghan Wenyi Tiaobian), has been reported to exert heat-clearing and detoxifying effects and used extensively for the treatment of severe pulmonary diseases in clinics including influenza, cough and pneumonia. AIM OF THIS STUDY The purpose of this study was to investigate the protective effect of KGLY on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice and to illuminate the underlying mechanisms. MATERIALS AND METHODS Mice were orally administrated with KGLY (50, 100 and 150mg/kg) before intratracheal instillation of LPS. 24h post LPS challenge, lung tissues and the bronchoalveolar lavage fluid (BALF) were collected for lung wet/dry (W/D) weight ratio, histopathological examinations and biochemical analyses. The cell counts, protein concentration, interleukin-1β (IL-1β), interleukin-6 (IL-6), necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) in BALF, superoxide dismutase (SOD), glutathione (GSH), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were detected. Meanwhile, the activation of toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), as well as matrix metalloproteinases 9 (MMP-9) were determined by western blot assay. RESULTS KGLY significantly prolonged mice survival time and ameliorated LPS-induced edema, thickening of alveolar septa and inflammatory cell infiltration in a dose-dependent manner. Additionally, KGLY markedly attenuated LPS-induced acute pulmonary inflammation via decreasing the expressions of cytokines and chemokines (IL-1β, IL-6, TNF-α, and MIP-2), enhanced the activities of anti-oxidative indicators (SOD and GSH), suppressed the levels of MPO and MDA, and down-regulated the expressions of TLR4, NF-κB and MMP9. CONCLUSIONS The results suggested that the relieving effect of KGLY against LPS-induced ALI might be partially due to suppression of oxidative stress and inflammatory response, inhibition of TLR4-mediated NF-κB activation, and down-regulation of MMP9 expression, indicating it may be a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Xie Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Chao-Yue Sun
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Yong-Bin Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Hui-Zhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China.
| | - Xue-Xuan Feng
- Guangdong Medical Laboratory Animal Center, Foshan 528248, PR China.
| | - Shao-Zhong Peng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Jie Yuan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Rong-Bo Zheng
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Wei-Ping Chen
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou 510006, PR China.
| | - Xiao-Dan Huang
- Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, PR China.
| |
Collapse
|
5
|
Wu FX, He Y, Di HT, Sun YM, Pan RR, Yu WF, Liu R. An Engineered Endomorphin-2 Gene for Morphine Withdrawal Syndrome. PLoS One 2016; 11:e0149877. [PMID: 27003293 PMCID: PMC4803333 DOI: 10.1371/journal.pone.0149877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/06/2016] [Indexed: 11/19/2022] Open
Abstract
An optimal therapeutics to manage opioid withdrawal syndrome is desired for opioid addiction treatment. Down-regulation of endogenous endomorphin-2 (EM2) level in the central nervous system after continuous morphine exposure was observed, which suggested that increase of EM2 could be an alternative novel method for opioid dependence. As a short peptide, the short half-life of EM2 limits its clinical usage through conventional administration. In the present study, we engineered an EM2 gene using a signal peptide of mouse growth factor for an out-secretory expression of EM2 and an adenovirus as a vector, which ultimately sustained the release of EM-2. After administration of the adenovirus in central nervous system, a sustained increase of EM2 level in the cerebral spinal fluid (CSF) was observed along with a reduction of morphine withdrawal syndrome. These findings suggest that the engineered EM2 gene delivered to the central nervous system could be a novel therapeutics for withdrawal syndrome in opioid dependent subjects.
Collapse
Affiliation(s)
- Fei-xiang Wu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Yan He
- Department of Anesthesiology, Dongfang Hospital, Fujian, 354200, China
| | - Hui-ting Di
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yu-ming Sun
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Rui-rui Pan
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wei-feng Yu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
6
|
Abdelmageed ME, El-Awady MS, Suddek GM. Apocynin ameliorates endotoxin-induced acute lung injury in rats. Int Immunopharmacol 2016; 30:163-170. [DOI: 10.1016/j.intimp.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 12/30/2022]
|
7
|
Inducible Lentivirus-Mediated siRNA against TLR4 Reduces Nociception in a Rat Model of Bone Cancer Pain. Mediators Inflamm 2015; 2015:523896. [PMID: 26556957 PMCID: PMC4628653 DOI: 10.1155/2015/523896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/26/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023] Open
Abstract
Although bone cancer pain is still not fully understood by scientists and clinicians alike, studies suggest that toll like receptor 4 (TLR4) plays an important role in the initiation and/or maintenance of pathological pain state in bone cancer pain. A promising treatment for bone cancer pain is the downregulation of TLR4 by RNA interference; however, naked siRNA (small interference RNA) is not effective in long-term treatments. In order to concoct a viable prolonged treatment for bone cancer pain, an inducible lentivirus LvOn-siTLR4 (tetracycline inducible lentivirus carrying siRNA targeting TLR4) was prepared and the antinociception effects were observed in bone cancer pain rats induced by Walker 256 cells injection in left leg. Results showed that LvOn-siTLR4 intrathecal injection with doxycycline (Dox) oral administration effectively reduced the nociception induced by Walker 256 cells while inhibiting the mRNA and protein expression of TLR4. Proinflammatory cytokines as TNF-α and IL-1β in spinal cord were also decreased. These findings suggest that TLR4 could be a target for bone cancer pain treatment and tetracycline inducible lentivirus LvOn-siTLR4 represents a new potential option for long-term treatment of bone cancer pain.
Collapse
|
8
|
Ligustrazine effect on lipopolysaccharide-induced pulmonary damage in rats. Burns 2015; 41:1235-41. [DOI: 10.1016/j.burns.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 02/03/2015] [Indexed: 01/05/2023]
|
9
|
Abdelmageed ME, El-Awady MS, Abdelrahim M, Suddek GM. LPS-RS attenuation of lipopolysaccharide-induced acute lung injury involves NF-κB inhibition. Can J Physiol Pharmacol 2015; 94:140-146. [PMID: 26544923 DOI: 10.1139/cjpp-2015-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we studied the effect of lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), an inhibitor of Toll-like receptor 4 (TLR4), in LPS-induced acute lung injury (ALI). Male Sprague-Dawley rats were treated with LPS-RS (0.1 mg/kg body mass, by intraperitoneal (i.p.) injection) 1 h before LPS injection (10 mg/kg, i.p.). Bronchoalveolar lavage fluid (BALF) and lung tissues were collected 24 h later to determine total and differential cell count, total protein content, levels of lactate dehydrogenase (LDH), histopathological changes, markers of oxidative stress, and mRNA expression of the inhibitory protein nuclear factor kappaB-α (NFκBIA) and TLR4. Additionally, rings of pulmonary artery were isolated for measuring vascular reactivity. LPS-induced ALI was indicated by increases in total and differential cell count, total protein, and LDH in BALF, and increased lung levels of malondialdehyde (MDA), as well as decreased activity of reduced glutathione (GSH) and superoxide dismutase (SOD). Moreover, LPS increased pulmonary artery contraction in response to phenylephrine (PE). Additionally, LPS downregulated mRNA expression of NFκBIA and upregulated mRNA expression of TLR4. LPS caused a marked inflammation in the lung tissue, with tubercular granuloma and numerous neutrophils. Pretreatment with LPS-RS protected against LPS-induced ALI by decreasing total and differential cell count, total protein, and LDH in BALF, and increased pulmonary GSH content and SOD activity without affecting MDA content. Additionally, it decreased the elevated PE-induced pulmonary artery contraction. LPS-RS upregulated mRNA expression of NFκBIA and downregulated mRNA expression of TLR4. Moreover, LPS-RS prevented inflammation in lung tissues. In conclusion, pretreatment with LPS-RS protects against LPS-induced ALI in rats through its anti-inflammatory effects, possibly by decreasing the mRNA expression of TLR4 and increasing that of NFκBIA.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona Abdelrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Niu N, Li B, Hu Y, Li X, Li J, Zhang H. Protective effects of scoparone against lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2014; 23:127-33. [DOI: 10.1016/j.intimp.2014.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022]
|
11
|
Merkel OM, Rubinstein I, Kissel T. siRNA delivery to the lung: what's new? Adv Drug Deliv Rev 2014; 75:112-28. [PMID: 24907426 PMCID: PMC4160355 DOI: 10.1016/j.addr.2014.05.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) has been thought of as the general answer to many unmet medical needs. After the first success stories, it soon became obvious that short interfering RNA (siRNA) is not suitable for systemic administration due to its poor pharmacokinetics. Therefore local administration routes have been adopted for more successful in vivo RNAi. This paper reviews nucleic acid modifications, nanocarrier chemistry, animal models used in successful pulmonary siRNA delivery, as well as clinical translation approaches. We summarize what has been published recently and conclude with the potential problems that may still hamper the efficient clinical application of RNAi in the lung.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, Wayne State University, Detroit, MI 48201, USA.
| | - Israel Rubinstein
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Thomas Kissel
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität Marburg, Ketzerbach 63, 35037 Marburg, Germany
| |
Collapse
|
12
|
Chuang YC, Shaw HM, Chen CC, Pan HJ, Lai WC, Huang HL. Short-term glutamine supplementation decreases lung inflammation and the receptor for advanced glycation end-products expression in direct acute lung injury in mice. BMC Pulm Med 2014; 14:115. [PMID: 25022445 PMCID: PMC4109782 DOI: 10.1186/1471-2466-14-115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background Glutamine (GLN) has been reported to improve clinical and experimental sepsis outcomes. However, the mechanisms underlying the actions of GLN remain unclear, and may depend upon the route of GLN administration and the model of acute lung injury (ALI) used. The aim of this study was to investigate whether short-term GLN supplementation had an ameliorative effect on the inflammation induced by direct acid and lipopolysaccharide (LPS) challenge in mice. Methods Female BALB/c mice were divided into two groups, a control group and a GLN group (4.17% GLN supplementation). After a 10-day feeding period, ALI was induced by intratracheal administration of hydrochloric acid (pH 1.0; 2 mL/kg of body weight [BW]) and LPS (5 mg/kg BW). Mice were sacrificed 3 h after ALI challenge. In this early phase of ALI, serum, lungs, and bronchoalveolar lavage fluid (BALF) from the mice were collected for further analysis. Results The results of this study showed that ALI-challenged mice had a significant increase in myeloperoxidase activity and expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the lung compared with unchallenged mice. Compared with the control group, GLN pretreatment in ALI-challenged mice reduced the levels of receptor for advanced glycation end-products (RAGE) and IL-1β production in BALF, with a corresponding decrease in their mRNA expression. The GLN group also had markedly lower in mRNA expression of cyclooxygenase-2 and NADPH oxidase-1. Conclusions These results suggest that the benefit of dietary GLN may be partly contributed to an inhibitory effect on RAGE expression and pro-inflammatory cytokines production at an early stage in direct acid and LPS-induced ALI in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Ling Huang
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan.
| |
Collapse
|
13
|
Gao J, Zhan Y, Chen J, Wang L, Yang J. Triptolide ameliorates lipopolysaccharide-induced acute lung injury in rats. Eur J Med Res 2013; 18:58. [PMID: 24345260 PMCID: PMC3878560 DOI: 10.1186/2047-783x-18-58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/27/2013] [Indexed: 01/08/2023] Open
Abstract
Background Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. In this study, the effects of triptolide on lipopolysaccharide (LPS)-induced ALI in rats were investigated. Methods Sixty-five male Sprague Dawley rats(approved by ethics committee of the First Affiliated Hospital of Soochow University) were randomly divided into five groups. The control group was injected with 2.5 mL saline/kg body weight via the tail vein and intraperitoneally with 1% dimethyl sulfoxide (DMSO) (n = 5). The L group was administered with 0.2% LPS dissolved in saline (5 mg/kg) to induce ALI via the tail vein (n = 15). The TP1, TP2, and TP3 groups were treated as rats in the L group and then intraperitoneally injected with 25, 50, and 100 μg triptolide/kg body weight, respectively (15 rats per group). Blood samples from the left heart artery were taken for blood gas analysis at 1 hour before injection and at 1, 3, 6, and 12 hours after saline and DMSO administration in the control group, LPS injection in the L group, and triptolide injection in the TP1, TP2, and TP3 groups. Lung wet-to-dry weight (W/D) ratio, diffuse alveolar damage (DAD) score, TNF-α levels, and mRNA and protein expression of toll-like receptor 4 (TLR4) were analyzed. Results Compared with the control group, the arterial partial pressure of oxygen (PaO2) declined (P <0.05), the W/D ratio and DAD score increased (P <0.05), and TNF-α levels in serum and bronchoalveolar lavage fluid (BALF) and mRNA and protein expression of TLR4 were significantly increased in the L group (P <0.05). Compared with the L group, PaO2 significantly increased in the TP2 and TP3 groups (P <0.05), while the W/D ratio and DAD score were significantly decreased in the TP2 and TP3 groups (P <0.05). TNF-α levels and mRNA and protein expression of TLR4 were significantly decreased in the TP2 and TP3 groups compared with the L group (P <0.05). Conclusions Triptolide can ameliorate LPS-induced ALI by reducing the release of the inflammatory mediator TNF-α and inhibiting TLR4 expression.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
14
|
Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol 2012; 2012:379024. [PMID: 23049242 PMCID: PMC3463198 DOI: 10.1155/2012/379024] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022] Open
Abstract
Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.
Collapse
|