1
|
Tsai CW, Chen TY, Wang JH, Young TH. Effect of Chitosan on Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts. Tissue Eng Part A 2024. [PMID: 38695112 DOI: 10.1089/ten.tea.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024] Open
Abstract
Previously, chitosan reduces the senescence-related phenotypes in human foreskin fibroblasts through the transforming growth factor beta (TGF-β) pathway, and enhances the proliferation and migration capabilities of these cells are demonstrated. In this study, we examined whether the senescence-delaying effect of chitosan could be applied to primary knee-related fibroblasts, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs). These two types of cells were obtained from donors who needed ACL reconstruction or knee replacement. We found that chitosan treatment effectively reduced aging-associated β-galactosidase (SA-β-gal)-positive cells, downregulated the expression of senescence-related proteins pRB and p53, and enhanced the 5-bromo-2'-deoxyuridine (BrdU) incorporation ability of SCs and ACLs. Moreover, chitosan could make SCs secret more glycosaminoglycans (GAGs) and produce type I collagen. The ability of ACLs to close the wound was also enhanced, and the TGF-β and alpha smooth muscle actin (αSMA) protein expression decreased after chitosan treatment. In summary, chitosan not only delayed the senescence but also enhanced the functions of SCs and ACLs, which is beneficial to the application of chitosan in cell expansion in vitro and cell therapy.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Tzung-Yu Chen
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Tong S, Sun Y, Kuang B, Wang M, Chen Z, Zhang W, Chen J. A Comprehensive Review of Muscle-Tendon Junction: Structure, Function, Injury and Repair. Biomedicines 2024; 12:423. [PMID: 38398025 PMCID: PMC10886980 DOI: 10.3390/biomedicines12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The muscle-tendon junction (MTJ) is a highly specific tissue interface where the muscle's fascia intersects with the extracellular matrix of the tendon. The MTJ functions as the particular structure facilitating the transmission of force from contractive muscle fibers to the skeletal system, enabling movement. Considering that the MTJ is continuously exposed to constant mechanical forces during physical activity, it is susceptible to injuries. Ruptures at the MTJ often accompany damage to both tendon and muscle tissues. In this review, we attempt to provide a precise definition of the MTJ, describe its subtle structure in detail, and introduce therapeutic approaches related to MTJ tissue engineering. We hope that our detailed illustration of the MTJ and summary of the representative research achievements will help researchers gain a deeper understanding of the MTJ and inspire fresh insights and breakthroughs for future research.
Collapse
Affiliation(s)
- Siqi Tong
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
3
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Mao Y, John N, Protzman NM, Long D, Sivalenka R, Azimi S, Mirabile B, Pouliot R, Gosiewska A, Hariri RJ, Brigido SA. A tri-layer decellularized, dehydrated human amniotic membrane scaffold supports the cellular functions of human tenocytes in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:37. [PMID: 37486403 PMCID: PMC10366303 DOI: 10.1007/s10856-023-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Differences in scaffold design have the potential to influence cell-scaffold interactions. This study sought to determine whether a tri-layer design influences the cellular function of human tenocytes in vitro. The single-layer decellularized, dehydrated human amniotic membrane (DDHAM) and the tri-layer DDHAM (DDHAM-3L) similarly supported tenocyte function as evidenced by improved cell growth and migration, reduced dedifferentiation, and an attenuated inflammatory response. The tri-layer design provides a mechanically more robust scaffold without altering biological activity.
Collapse
Affiliation(s)
- Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nikita John
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ, 08854, USA
| | - Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr, Easton, PA, 18045, USA
| | - Desiree Long
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Raja Sivalenka
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Shamshad Azimi
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | | | - Robert Pouliot
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | - Anna Gosiewska
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA.
| | - Robert J Hariri
- Celularity Inc., 170 Park Ave., Florham Park, NJ, 07932, USA
| | | |
Collapse
|
5
|
Jeannerat A, Meuli J, Peneveyre C, Jaccoud S, Chemali M, Thomas A, Liao Z, Abdel-Sayed P, Scaletta C, Hirt-Burri N, Applegate LA, Raffoul W, Laurent A. Bio-Enhanced Neoligaments Graft Bearing FE002 Primary Progenitor Tenocytes: Allogeneic Tissue Engineering & Surgical Proofs-of-Concept for Hand Ligament Regenerative Medicine. Pharmaceutics 2023; 15:1873. [PMID: 37514060 PMCID: PMC10385025 DOI: 10.3390/pharmaceutics15071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 105 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.
Collapse
Affiliation(s)
- Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Joachim Meuli
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Sandra Jaccoud
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michèle Chemali
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Axelle Thomas
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Zhifeng Liao
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Wassim Raffoul
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Liang W, Zhou C, Meng Y, Fu L, Zeng B, Liu Z, Ming W, Long H. An overview of the material science and knowledge of nanomedicine, bioscaffolds, and tissue engineering for tendon restoration. Front Bioeng Biotechnol 2023; 11:1199220. [PMID: 37388772 PMCID: PMC10306281 DOI: 10.3389/fbioe.2023.1199220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Tendon wounds are a worldwide health issue affecting millions of people annually. Due to the characteristics of tendons, their natural restoration is a complicated and lengthy process. With the advancement of bioengineering, biomaterials, and cell biology, a new science, tissue engineering, has developed. In this field, numerous ways have been offered. As increasingly intricate and natural structures resembling tendons are produced, the results are encouraging. This study highlights the nature of the tendon and the standard cures that have thus far been utilized. Then, a comparison is made between the many tendon tissue engineering methodologies proposed to date, concentrating on the ingredients required to gain the structures that enable appropriate tendon renewal: cells, growth factors, scaffolds, and scaffold formation methods. The analysis of all these factors enables a global understanding of the impact of each component employed in tendon restoration, thereby shedding light on potential future approaches involving the creation of novel combinations of materials, cells, designs, and bioactive molecules for the restoration of a functional tendon.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
7
|
Tendon 3D Scaffolds Establish a Tailored Microenvironment Instructing Paracrine Mediated Regenerative Amniotic Epithelial Stem Cells Potential. Biomedicines 2022; 10:biomedicines10102578. [PMID: 36289840 PMCID: PMC9599634 DOI: 10.3390/biomedicines10102578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue’s characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs’ immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.
Collapse
|
8
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
9
|
Wang HN, Rong X, Yang LM, Hua WZ, Ni GX. Advances in Stem Cell Therapies for Rotator Cuff Injuries. Front Bioeng Biotechnol 2022; 10:866195. [PMID: 35694228 PMCID: PMC9174670 DOI: 10.3389/fbioe.2022.866195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff injury is a common upper extremity musculoskeletal disease that may lead to persistent pain and functional impairment. Despite the clinical outcomes of the surgical procedures being satisfactory, the repair of the rotator cuff remains problematic, such as through failure of healing, adhesion formation, and fatty infiltration. Stem cells have high proliferation, strong paracrine action, and multiple differentiation potential, which promote tendon remodeling and fibrocartilage formation and increase biomechanical strength. Additionally, stem cell-derived extracellular vesicles (EVs) can increase collagen synthesis and inhibit inflammation and adhesion formation by carrying regulatory proteins and microRNAs. Therefore, stem cell-based therapy is a promising therapeutic strategy that has great potential for rotator cuff healing. In this review, we summarize the advances of stem cells and stem cell-derived EVs in rotator cuff repair and highlight the underlying mechanism of stem cells and stem cell-derived EVs and biomaterial delivery systems. Future studies need to explore stem cell therapy in combination with cellular factors, gene therapy, and novel biomaterial delivery systems.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Lu-Ming Yang
- Musculoskeletal Sonography and Occupational Performance Lab, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Wei-Zhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- *Correspondence: Guo-Xin Ni,
| |
Collapse
|
10
|
Wilks BT, Evans EB, Howes A, Hopkins CM, Nakhla MN, Williams G, Morgan JR. Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103939. [PMID: 35102708 PMCID: PMC8981917 DOI: 10.1002/advs.202103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dysregulation of extracellular matrix (ECM) synthesis, organization, and mechanics are hallmark features of diseases like fibrosis and cancer. However, most in vitro models fail to recapitulate the three-dimensional (3D) multi-scale hierarchical architecture of collagen-rich tissues and as a result, are unable to mirror native or disease phenotypes. Herein, using primary human fibroblasts seeded into custom fabricated 3D non-adhesive agarose molds, a novel strategy is proposed to direct the morphogenesis of engineered 3D ring-shaped tissue constructs with tensile and histological properties that recapitulate key features of fibrous connective tissue. To characterize the shift from monodispersed cells to a highly-aligned, collagen-rich matrix, a multi-modal approach integrating histology, multiphoton second-harmonic generation, and electron microscopy is employed. Structural changes in collagen synthesis and alignment are then mapped to functional differences in tissue mechanics and total collagen content. Due to the absence of an exogenously added scaffolding material, this model enables the direct quantification of cell-derived changes in 3D matrix synthesis, alignment, and mechanics in response to the addition or removal of relevant biomolecular perturbations. To illustrate this, the effects of nutrient composition, fetal bovine serum, rho-kinase inhibitor, and pro- and anti-fibrotic compounds on ECM synthesis, 3D collagen architecture, and mechanophenotype are quantified.
Collapse
Affiliation(s)
- Benjamin T. Wilks
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Present address:
Center for Engineering in Medicine & SurgeryHarvard Medical School & Massachusetts General HospitalBostonMA02114USA
| | | | - Andrew Howes
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Caitlin M. Hopkins
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Morcos N. Nakhla
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| | - Geoffrey Williams
- Department of Molecular BiologyCell Biology & BiochemistryBrown UniversityProvidenceRI02129USA
| | - Jeffrey R. Morgan
- Center for Biomedical EngineeringBrown UniversityProvidenceRI02129USA
- Center for Alternatives to Animals in TestingBrown UniversityProvidenceRI02129USA
- Department of Pathology & Laboratory MedicineBrown UniversityProvidenceRI02129USA
| |
Collapse
|
11
|
Russo V, El Khatib M, Prencipe G, Cerveró-Varona A, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022; 11:cells11020266. [PMID: 35053383 PMCID: PMC8773518 DOI: 10.3390/cells11020266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
- Correspondence:
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
12
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
13
|
Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells Int 2021; 2021:1488829. [PMID: 34824586 PMCID: PMC8610661 DOI: 10.1155/2021/1488829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
The natural healing capacity of the tendon tissue is limited due to the hypovascular and cellular nature of this tissue. So far, several conventional approaches have been tested for tendon repair to accelerate the healing process, but all these approaches have their own advantages and limitations. Regenerative medicine and tissue engineering are interdisciplinary fields that aspire to develop novel medical devices, innovative bioscaffold, and nanomedicine, by combining different cell sources, biodegradable materials, immune modulators, and nanoparticles for tendon tissue repair. Different studies supported the idea that bioscaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potentiality. However, available data are lacking to allow definitive conclusion on the use of bioscaffolds for tendon regeneration and repairing. In this review, we provide an overview of the current basic understanding and material science in the field of bioscaffolds, nanomedicine, and tissue engineering for tendon repair.
Collapse
|
14
|
Mesenchymal Stromal Cells Adapt to Chronic Tendon Disease Environment with an Initial Reduction in Matrix Remodeling. Int J Mol Sci 2021; 22:ijms222312798. [PMID: 34884602 PMCID: PMC8657831 DOI: 10.3390/ijms222312798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Tendon lesions are common sporting injuries in humans and horses alike. The healing process of acute tendon lesions frequently results in fibrosis and chronic disease. In horses, local mesenchymal stromal cell (MSC) injection is an accepted therapeutic strategy with positive influence on acute lesions. Concerning the use of MSCs in chronic tendon disease, data are scarce but suggest less therapeutic benefit. However, it has been shown that MSCs can have a positive effect on fibrotic tissue. Therefore, we aimed to elucidate the interplay of MSCs and healthy or chronically diseased tendon matrix. Equine MSCs were cultured either as cell aggregates or on scaffolds from healthy or diseased equine tendons. Higher expression of tendon-related matrix genes and tissue inhibitors of metalloproteinases (TIMPs) was found in aggregate cultures. However, the tenogenic transcription factor scleraxis was upregulated on healthy and diseased tendon scaffolds. Matrix metalloproteinase (MMPs) expression and activity were highest in healthy scaffold cultures but showed a strong transient decrease in diseased scaffold cultures. The release of glycosaminoglycan and collagen was also higher in scaffold cultures, even more so in those with tendon disease. This study points to an early suppression of MSC matrix remodeling activity by diseased tendon matrix, while tenogenic differentiation remained unaffected.
Collapse
|
15
|
Ciardulli MC, Lovecchio J, Scala P, Lamparelli EP, Dale TP, Giudice V, Giordano E, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D Biomimetic Scaffold for Growth Factor Controlled Delivery: An In-Vitro Study of Tenogenic Events on Wharton's Jelly Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13091448. [PMID: 34575523 PMCID: PMC8465418 DOI: 10.3390/pharmaceutics13091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-965-234
| |
Collapse
|
16
|
Thankam FG, Diaz C, Chandra I, Link J, Newton J, Dilisio MF, Agrawal DK. Hybrid interpenetrating hydrogel network favoring the bidirectional migration of tenocytes for rotator cuff tendon regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:467-477. [PMID: 34342931 DOI: 10.1002/jbm.b.34924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/26/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023]
Abstract
Replenishment of tenocytes to the injury site is an ideal strategy to improve healing response and accelerate the tendon ECM regeneration. The present study focused on the synthesis and characterization of a hybrid hydrogel scaffold system poly(propylene-fumarate)-alginate-polyvinyl alcohol-acrylic acid (PAPA) using poly(propylene-fumarate) (PPF), alginate, polyvinyl alcohol (PVA) and acrylic acid and the in vitro investigation of bidirectional mobility of swine shoulder tenocytes (SST) for its potential application in rotator-cuff tendon regeneration. IR analysis revealed the presence of alginate, PPF and PVA segments on the surface, SEM and AFM analyses revealed the porous and nano-topographical features of PAPA, respectively, swelling was 712.6 ± 84.21% with the EWC (%) of 87.59 ± 1.26 having the diffusional exponent and swelling constant 0.551 and 1.8, respectively. PAPA was biodegradable, cytocompatible and supported long-term survival of SSTs. SEM imaging revealed the adhesion, colonization, and sheet formation of SSTs within the PAPA hydrogel network. The SSTs seeded on the PAPA scaffolds were peculiar for their bidirectional migration as the anterograde movement was completed in 9 days whereas the retrograde infiltration occurred up to the depth of 198 μm. These findings suggest the promising translational potential of PAPA scaffold system in the management of rotator cuff tendon injury.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Connor Diaz
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Isaiah Chandra
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Josh Link
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Joseph Newton
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
17
|
Migliorini F, Berton A, Salvatore G, Candela V, Khan W, Longo UG, Denaro V. Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects of the Knee- A Systematic Review. Curr Stem Cell Res Ther 2021; 15:547-556. [PMID: 32081109 DOI: 10.2174/1574888x15666200221122834] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND There is still a lack of consensus about the best treatment of chondral defects of the knee. We conducted a systematic PRISMA review to evaluate clinical outcomes of Autologous Chondrocyte Implantation (ACI) and Mesenchymal Stem Cell (MSC) injections for the treatment of focal chondral defects of the knee. METHODS A systematic review of literature was performed according to the PRISMA guidelines. All the articles reporting data on ACI and MSC treatments for chondral defects of the knee were considered for inclusion. The main databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar. The statistical analysis was performed using the Review Manager Software. RESULTS In the p-ACI group (987 knees), the Cincinnati Score improved by 18.94% (p=0.1), VAS by 38% (p=0.01), Tegner score by 19.11% (p=0.03), Lysholm score by 22.40% (p=0.01), IKCD by 27.36% (p=0.003). In the c-ACI group (444 knees), the Cincinnati Score improved by 23.80% (p=0.08), KOOS by 23.48% (p=0.03), VAS by 33.2% (p=0.005), IKDC by 33.30% (p=0.005). In the m-ACI group (599 knees), the Cincinnati Score improved by 26.80% (p=0.08), KOOS by 31.59% (p=0.1), VAS by 30.43% (p=0.4), Tegner score by 23.1% (p=0.002), Lysholm score by 31.14% (p=0.004), IKCD by 30.57% (p<0.001). In the MSCs group (291 knees), the KOOS improved by 29.7% (p=0.003), VAS by 41.89% (p<0.001), Tegner score by 25.81% (p=0.003), Lysholm score by 36.96% (p<0.001), IKCD by 30.57% (p=0.001). CONCLUSION Both ACI and MSC therapies can be considered as a concrete solution to treat focal chondral defects of the knee.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Alessandra Berton
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Giuseppe Salvatore
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Vincenzo Candela
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom
| | - Umile G Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| |
Collapse
|
18
|
Candela V, De Carli A, Longo UG, Sturm S, Bruni G, Salvatore G, Denaro V. Hip and Groin Pain in Soccer Players. JOINTS 2021; 7:182-187. [PMID: 34235383 PMCID: PMC8253608 DOI: 10.1055/s-0041-1730978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 04/18/2021] [Indexed: 10/29/2022]
Abstract
Purpose The aim of this article is to illustrate the recent framework necessary to standardize studies on groin pain and review the existing literature on groin pain in football. Methods The common pathological processes underlying groin pain such as muscle, tendon or ligament strain, bone injury or fracture, sport hernia, bursitis, osteitis pubis, and hip-related diseases have been reviewed and current management options have been considered. Results Groin pain is considered a pain in pubic or lower abdominal or adductors region which can be monolateral or bilateral. It is common in high-intensity team sports and can negatively affect an athlete's professional carrier, causing serious disruption in the performance. Despite a high prevalence of groin pain in athletes, diagnosis and management of the underlying pathological processes remain a challenge for surgeons, radiologists, and physiotherapists alike. Conclusion A multidisciplinary approach is essential for patients with groin pain allowing prompt diagnosis and initiation of treatment thus facilitating more rapid return to play and preventing potential long-term sequelae of chronic groin pathology.
Collapse
Affiliation(s)
- Vincenzo Candela
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Trigoria, Rome, Italy
| | - Angelo De Carli
- Orthopaedic Unit and "Kirk Kilgour" Sports Injury Centre, S. Andrea Hospital, University of Rome "La Sapienza," Italy
| | - Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Trigoria, Rome, Italy
| | - Sofia Sturm
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Trigoria, Rome, Italy
| | - Giorgio Bruni
- Orthopaedic Unit and "Kirk Kilgour" Sports Injury Centre, S. Andrea Hospital, University of Rome "La Sapienza," Italy
| | - Giuseppe Salvatore
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Trigoria, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Trigoria, Rome, Italy
| |
Collapse
|
19
|
Lakhani A, Sharma E, Kapila A, Khatri K. Known data on applied regenerative medicine in tendon healing. Bioinformation 2021; 17:514-527. [PMID: 34602779 PMCID: PMC8450149 DOI: 10.6026/97320630017514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Tendons and ligaments are important structures in the musculoskeletal system. Ligaments connect various bones and provide stability in complex movements of joints in the knee. Tendon is made of dense connective tissue and transmits the force of contraction from muscle to bone. They are injured due to direct trauma in sports or roadside accidents. Tendon healing after repair is often poor due to the formation of fibro vascular scar tissues with low mechanical property. Regenerative techniques such as PRP (platelet-rich plasma), stem cells, scaffolds, gene therapy, cell sheets, and scaffolds help augment repair and regenerate tissue in this context. Therefore, it is of interest to document known data (repair process, tissue regeneration, mechanical strength, and clinical outcome) on applied regenerative medicine in tendon healing.
Collapse
Affiliation(s)
- Amit Lakhani
- Dr Br Ambedkar State Institute of Medical Sciences, Mohali Punjab, India
| | - Ena Sharma
- Maharishi Markandeshwar College of Dental Sciences and Hospital Mullana, Ambala, Haryana, India
| | | | - Kavin Khatri
- All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
20
|
Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J Funct Biomater 2021; 12:jfb12010014. [PMID: 33672492 PMCID: PMC8006220 DOI: 10.3390/jfb12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers are widely accepted natural materials in regenerative medicine, and further development of their bioactivities and discoveries on their composition/function relationships could greatly advance the field. However, a concise insight on commonly investigated biopolymers, their current applications and outlook of their modifications for multibioactivity are scarce. This review bridges this gap for professionals and especially freshmen in the field who are also interested in modification methods not yet in commercial use. A series of polymeric materials in research and development uses are presented as well as challenges that limit their efficacy in tissue regeneration are discussed. Finally, their roles in the regeneration of select tissues including the skin, bone, cartilage, and tendon are highlighted along with modifiable biopolymer moieties for different bioactivities.
Collapse
|
21
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|
22
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
23
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
24
|
Wang D, Pun CCM, Huang S, Tang TCM, Ho KKW, Rothrauff BB, Yung PSH, Blocki AM, Ker EDF, Tuan RS. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J 2020; 34:8172-8186. [PMID: 32301551 DOI: 10.1096/fj.201902377rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/26/2022]
Abstract
Treatment of tendon injuries is challenging. To develop means to augment tendon regeneration, we have previously prepared a soluble, low immunogenic (DNA-free), tendon extracellular matrix fraction (tECM) by urea extraction of juvenile bovine tendons, which is capable of enhancing transforming growth factor-β (TGF-β) mediated tenogenesis in human adipose-derived stem cells (hASCs). Here, we aimed to elucidate the mechanism of tECM-driven hASC tenogenic differentiation in vitro, focusing on the integrin and TGF-β/SMAD pathways. Our results showed that tECM promoted hASC proliferation and tenogenic differentiation in vitro based on tenogenesis-associated markers. tECM also induced higher expression of several integrin subunits and TGF-β receptors, and nuclear translocation of p-SMAD2 in hASCs. Pharmacological inhibition of integrin-ECM binding, focal adhesion kinase (FAK) signaling, or TGF-β signaling independently led to compromised pro-tenogenic effects of tECM and actin fiber polymerization. Additionally, integrin blockade inhibited tECM-driven TGFBR2 expression, while inhibiting TGF-β signaling decreased tECM-mediated expression of integrin α1, α2, and β1 in hASCs. Together, these findings suggest that the strong pro-tenogenic bioactivity of tECM is regulated via integrin/TGF-β signaling crosstalk. Understanding how integrins interact with signaling by TGF-β and/or other growth factors (GFs) within the tendon ECM microenvironment will provide a rational basis for an ECM-based approach for tendon repair.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Charmaine C M Pun
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Thomas C M Tang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin K W Ho
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick S H Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna M Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Elmer D F Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Tondelli T, Götschi T, Camenzind RS, Snedeker JG. Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model. PLoS One 2020; 15:e0231619. [PMID: 32294117 PMCID: PMC7159246 DOI: 10.1371/journal.pone.0231619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion. Purpose This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons. Study design Controlled laboratory study Methods Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection. Results Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM). Conclusion Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery. Clinical relevance This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.
Collapse
Affiliation(s)
- Timo Tondelli
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Roland S. Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Thönnes S, Shelton P, Bracey DN, Van Dyke M, Whitlock P, Smith TL, Moghaddam A, Tuohy C. Success and efficiency of cell seeding in Avian Tendon Xenografts - A promising alternative for tendon and ligament reconstruction. J Orthop 2020; 18:155-161. [PMID: 32021023 DOI: 10.1016/j.jor.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Decellularized tendon xenografts offer a promising alternative for reconstruction by using ubiquitously available material. This study compares static and centrifugal seeding of avian tendon scaffolds with NIH 3T3 fibroblasts. Incorporation of viable cells was achievable with both techniques, represented by DNA content. Proliferation rate and viability assay showed neither damage by centrifugal force nor superiority of the technique. Cell proliferation after 10 days of culture demonstrated that the scaffold did not hinder 3-D culturing. Confocal laser microscopy revealed structural details as formation of focal adhesions, to provide deeper insight into the process of cell attachment and growth in xenografts.
Collapse
Affiliation(s)
- Simon Thönnes
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstr. 200a, D-69118, Heidelberg, Germany
| | - Peter Shelton
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark Van Dyke
- Virginia Tech, Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University Blacksburg, VA, 24061, USA
| | - Patrick Whitlock
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Arash Moghaddam
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstr. 200a, D-69118, Heidelberg, Germany
| | - Christopher Tuohy
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
27
|
The effect of aligned electrospun fibers and macromolecular crowding in tenocyte culture. Methods Cell Biol 2020; 157:225-247. [DOI: 10.1016/bs.mcb.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
30
|
Transforming Growth Factor Beta 3-Loaded Decellularized Equine Tendon Matrix for Orthopedic Tissue Engineering. Int J Mol Sci 2019; 20:ijms20215474. [PMID: 31684150 PMCID: PMC6862173 DOI: 10.3390/ijms20215474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta 3 (TGFβ3) promotes tenogenic differentiation and may enhance tendon regeneration in vivo. This study aimed to apply TGFβ3 absorbed in decellularized equine superficial digital flexor tendon scaffolds, and to investigate the bioactivity of scaffold-associated TGFβ3 in an in vitro model. TGFβ3 could effectively be loaded onto tendon scaffolds so that at least 88% of the applied TGFβ3 were not detected in the rinsing fluid of the TGFβ3-loaded scaffolds. Equine adipose tissue-derived multipotent mesenchymal stromal cells (MSC) were then seeded on scaffolds loaded with 300 ng TGFβ3 to assess its bioactivity. Both scaffold-associated TGFβ3 and TGFβ3 dissolved in the cell culture medium, the latter serving as control group, promoted elongation of cell shapes and scaffold contraction (p < 0.05). Furthermore, scaffold-associated and dissolved TGFβ3 affected MSC musculoskeletal gene expression in a similar manner, with an upregulation of tenascin c and downregulation of other matrix molecules, most markedly decorin (p < 0.05). These results demonstrate that the bioactivity of scaffold-associated TGFβ3 is preserved, thus TGFβ3 application via absorption in decellularized tendon scaffolds is a feasible approach.
Collapse
|
31
|
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3323. [PMID: 31614735 PMCID: PMC6829293 DOI: 10.3390/ma12203323] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine has tremendous potential for improved treatment outcomes and has been stimulated by advances made in bioengineering over the last few decades. The strategies of engineering tissues and assembling functional constructs that are capable of restoring, retaining, and revitalizing lost tissues and organs have impacted the whole spectrum of medicine and health care. Techniques to combine biomimetic materials, cells, and bioactive molecules play a decisive role in promoting the regeneration of damaged tissues or as therapeutic systems. Hydrogels have been used as one of the most common tissue engineering scaffolds over the past two decades due to their ability to maintain a distinct 3D structure, to provide mechanical support for the cells in the engineered tissues, and to simulate the native extracellular matrix. The high water content of hydrogels can provide an ideal environment for cell survival, and structure which mimics the native tissues. Hydrogel systems have been serving as a supportive matrix for cell immobilization and growth factor delivery. This review outlines a brief description of the properties, structure, synthesis and fabrication methods, applications, and future perspectives of smart hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Somasundar Mantha
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Parisa Khayambashi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Yuli Zhang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Owen Tao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Hieu M Pham
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
32
|
Abstract
Regenerative medicine is gaining more and more space for the treatment of Achilles pathologic conditions. Biologics could play a role in the management of midportion Achilles tendinopathy as a step between conservative and surgical treatment or as an augmentation. Higher-level studies are needed before determining a level of treatment recommendation for biologic strategies for insertional Achilles tendinopathy. Combining imaging with patient's functional requests could be the way to reach a protocol for the use of biologics for the treatment of midportion Achilles tendinopathy and, for this perspective, the authors describe the Foot and Ankle Reconstruction Group algorithm of treatment.
Collapse
Affiliation(s)
- Cristian Indino
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy.
| | - Riccardo D'Ambrosi
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy
| | - Federico G Usuelli
- Humanitas San Pio X, via Francesco Nava, 31, 20159 Milano, Lombardia, Italy
| |
Collapse
|
33
|
Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model. Stem Cells Int 2019; 2019:5267479. [PMID: 31558905 PMCID: PMC6735180 DOI: 10.1155/2019/5267479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction.
Collapse
|
34
|
Jayasree A, Kottappally Thankappan S, Ramachandran R, Sundaram MN, Chen CH, Mony U, Chen JP, Jayakumar R. Bioengineered Braided Micro-Nano (Multiscale) Fibrous Scaffolds for Tendon Reconstruction. ACS Biomater Sci Eng 2019; 5:1476-1486. [PMID: 33405622 DOI: 10.1021/acsbiomaterials.8b01328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A braided multiscale fibrous scaffold consisting of aligned PCL micro/collagen-bFGFnano fibers was fabricated (mPCL-nCol-bFGF) to mimic native tendon tissue architecture which was further coated with alginate to aid in prevention of peritendinous adhesion. The bFGF release kinetics showed a sustained release of growth factors for a period of 20 days. Further, in vitro cell viability, attachment, and proliferation were performed using rabbit tenocytes under static and dynamic conditions. mPCL-nCol-bFGF showed a higher cell proliferation and enhanced expression of tenogenic markers compared to mPCL-nCol (braided scaffold without bFGF). When subjected to dynamic stimulation in a bioreactor, mPCL-nCol-bFGF-DS (braided scaffold with bFGF after dynamic stimulation) showed enhanced cellular proliferation and tenogenic marker expression, compared to mPCL-nCol-bFGF. The in vivo studies of the cell seeded scaffold after dynamic stimulation in Achilles tendon defect model showed tendon tissue regeneration with aligned collagen morphology within 12 weeks of implantation.
Collapse
Affiliation(s)
- Anjana Jayasree
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, India
| | | | - Retheesh Ramachandran
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - M Nivedhitha Sundaram
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, India
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Ullas Mony
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.,Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| | - Rangasamy Jayakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, India
| |
Collapse
|
35
|
Graham JG, Wang ML, Rivlin M, Beredjiklian PK. Biologic and mechanical aspects of tendon fibrosis after injury and repair. Connect Tissue Res 2019; 60:10-20. [PMID: 30126313 DOI: 10.1080/03008207.2018.1512979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendon injuries of the hand that require surgical repair often heal with excess scarring and adhesions to adjacent tissues. This can compromise the natural gliding mechanics of the flexor tendons in particular, which operate within a fibro-osseous tunnel system similar to a set of pulleys. Even combining the finest suture repair techniques with optimal hand therapy protocols cannot ensure predictable restoration of hand function in these cases. To date, the majority of research regarding tendon injuries has revolved around the mechanical aspects of the surgical repair (i.e. suture techniques) and postoperative rehabilitation. The central principles of treatment gleaned from this literature include using a combination of core and epitendinous sutures during repair and initiating motion early on in hand therapy to improve tensile strength and limit adhesion formation. However, it is likely that the best clinical solution will utilize optimal biological modulation of the healing response in addition to these core strategies and, recently, the research in this area has expanded considerably. While there are no proven additive biological agents that can be used in clinical practice currently, in this review, we analyze the recent literature surrounding cytokine modulation, gene and cell-based therapies, and tissue engineering, which may ultimately lead to improved clinical outcomes following tendon injury in the future.
Collapse
Affiliation(s)
- Jack G Graham
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA
| | - Mark L Wang
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Michael Rivlin
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Pedro K Beredjiklian
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
36
|
Xu T, Xu M, Bai J, Lin J, Yu B, Liu Y, Guo X, Shen J, Sun H, Hao Y, Geng D. Tenocyte-derived exosomes induce the tenogenic differentiation of mesenchymal stem cells through TGF-β. Cytotechnology 2019; 71:57-65. [PMID: 30599073 DOI: 10.1007/s10616-018-0264-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold great potential to treat tissue damage based on their multipotent property, and are also considered as suitable cell resources to create tissue-engineered grafts for tendon repair. However, the clinical application of MSCs is still limited by the lack of efficient methods to induce tenogenic differentiation. In this study, by performing the experiments in transwell system, we found that paracrine factors from tenocytes could induce MSCs to undergo the tenogenic differentiation. We further verified that tenocytes could secrete exosomes and these tenocyte-derived exosomes efficiently initiated the tenogenic differentiation of MSCs. Finally, we revealed that the TGF-β existing in tenocyte-derived exosomes mediated the process, as the inhibition of TGF-β signaling abolished the effects of tenocyte-derived exosomes on MSCs. By investigating the effects of tenocytes on MSCs, we found that tenocytes-derived exosomes can induce tenogenic differentiation of MSCs in a TGF-β dependent manner. These studies provided critical information about the multipotency of MSCs and suggested potential strategies for clinical translation.
Collapse
Affiliation(s)
- Tianpeng Xu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, 215006, People's Republic of China
| | - Menglei Xu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, 215006, People's Republic of China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Binqing Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Yu Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Xiaobin Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Jining Shen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Houyi Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, 215006, People's Republic of China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
37
|
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. MATERIALS 2018; 11:ma11071116. [PMID: 29966303 PMCID: PMC6073924 DOI: 10.3390/ma11071116] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising approach to repair tendon and muscle when natural healing fails. Biohybrid constructs obtained after cells’ seeding and culture in dedicated scaffolds have indeed been considered as relevant tools for mimicking native tissue, leading to a better integration in vivo. They can also be employed to perform advanced in vitro studies to model the cell differentiation or regeneration processes. In this review, we report and analyze the different solutions proposed in literature, for the reconstruction of tendon, muscle, and the myotendinous junction. They classically rely on the three pillars of tissue engineering, i.e., cells, biomaterials and environment (both chemical and physical stimuli). We have chosen to present biomimetic or bioinspired strategies based on understanding of the native tissue structure/functions/properties of the tissue of interest. For each tissue, we sorted the relevant publications according to an increasing degree of complexity in the materials’ shape or manufacture. We present their biological and mechanical performances, observed in vitro and in vivo when available. Although there is no consensus for a gold standard technique to reconstruct these musculo-skeletal tissues, the reader can find different ways to progress in the field and to understand the recent history in the choice of materials, from collagen to polymer-based matrices.
Collapse
|
38
|
González-Quevedo D, Martínez-Medina I, Campos A, Campos F, Carriel V. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018; 7:318-324. [PMID: 29922450 PMCID: PMC5987687 DOI: 10.1302/2046-3758.74.bjr-2017-0326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. METHODS We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis. RESULTS A total of 388 references were retrieved and 35 studies were included in this systematic review. The different biomaterials developed were analyzed and we found that they improve the biomechanical and histological characteristics of the repaired tendon. At meta-analysis, despite a high heterogeneity, it revealed a statistically significant effect in favour of the maximum load, the maximum stress, and the Young's modulus between experimental and control groups. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line, favouring experimental groups. CONCLUSIONS This review of the literature demonstrates the heterogeneity in the tendon tissue engineering literature. Several biomaterials have been developed and have been shown to enhance tendon healing and regeneration with improved outcomes.Cite this article: D. González-Quevedo, I. Martínez-Medina, A. Campos, F. Campos, V. Carriel. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018;7:318-324. DOI: 10.1302/2046-3758.74.BJR-2017-0326.
Collapse
Affiliation(s)
- D. González-Quevedo
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain, PhD Program in Biomedicine, University of Granada, Spain
| | - I. Martínez-Medina
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain
| | - A. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - F. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - V. Carriel
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| |
Collapse
|
39
|
Balakrishnan-nair DK, Nair ND, Venugopal SK, Das VN, George S, Abraham MJ, Eassow S, Alison MR, Sainulabdeen A, Anilkumar TV. An Immunopathological Evaluation of the Porcine Cholecyst Matrix as a Muscle Repair Graft in a Male Rat Abdominal Wall Defect Model. Toxicol Pathol 2018; 46:169-183. [DOI: 10.1177/0192623317752894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing use of animal-based biomaterials for regenerative medical applications, the need for their safety assessment is paramount. A porcine cholecyst-derived scaffold (CDS), intended as a muscle repair graft, prepared by a nondetergent/enzymatic method was engrafted in a rat abdominal wall defect model. Host tissue–scaffold interface samples were collected 2, 8, and 16 weeks postimplantation and evaluated by histopathology, immunohistochemistry, and electron microscopy. The nature of the tissue reaction was compared with those induced by a jejunum-derived scaffold (JDS) prepared by the same method and a commercial-grade small intestinal submucosa (CSIS) scaffold. A study of the immunopathological response in major lymphoid tissues and immunophenotyping for M1 and M2 macrophages was performed at the host tissue–scaffold interface. Further, “irritancy scores” for CDS and JDS were determined using CSIS as the reference material. Both CDS and JDS appeared to be potential biomaterials for muscle grafts, but the former stimulated a skeletal muscle tissue remodeling response predominated by M2 macrophages. The data support the notion that biomaterials with similar biocompatibility, based on local tissue response on implantation, may cause differential immunogenicity. Additionally, CDS compared to JDS and CSIS was found to be less immunotoxic.
Collapse
Affiliation(s)
- Dhanush Krishna Balakrishnan-nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Narayanan Divakaran Nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Syam Kunnekkattu Venugopal
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Vijayan Narayana Das
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Sisilamma George
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Mammen John Abraham
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Saji Eassow
- Meat Products of India Ltd., Koothattukulam, Ernakulam District, Edayar, India
| | - Malcolm Ronald Alison
- Barts Cancer Institute, University of London, Charterhouse Square, London, United Kingdom
| | - Anoop Sainulabdeen
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, India
| |
Collapse
|
40
|
Rogers JP, Kwapisz A, Tokish JM. Anterior Capsule Reconstruction for Irreparable Subscapularis Tears. Arthrosc Tech 2017; 6:e2241-e2247. [PMID: 29349025 PMCID: PMC5765719 DOI: 10.1016/j.eats.2017.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/09/2017] [Indexed: 02/03/2023] Open
Abstract
A subscapularis complete tear presents its own challenges in management. The glenohumeral biomechanics and force couple are reliant on a competent and functioning subscapularis muscle. An irreparable subscapularis makes those same challenges even more difficult to address. Traditionally, this problem has been addressed with tendon transfers, including pectoralis major or latissimus dorsi. These techniques can alter the ideal biomechanics of the shoulder and have high rates or failure. Iliotibial autograft or tibialis anterior have also been wrought with high failure rates. Recently, the superior capsular reconstruction has been described for irreparable tears of the supraspinatus and infraspinatus. Theoretically, this procedure can act as a check rein against subluxation, and may serve to reconnect the force couples of the rotator cuff. Anterior escape may represent a similar challenge when the irreparable rotator cuff tendon is the subscapularis. To address this, we describe an open anterior capsule reconstruction technique with an acellular dermal graft. We theorize that this procedure may serve in a similar capacity to its superior capsular counterpart.
Collapse
Affiliation(s)
- Jason P. Rogers
- Steadman Hawkins Clinic of the Carolinas, Greenville, South Carolina, U.S.A
| | - Adam Kwapisz
- Steadman Hawkins Clinic of the Carolinas, Greenville, South Carolina, U.S.A.,The Hawkins Foundation, Greenville, South Carolina, U.S.A.,Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Poland
| | - John M. Tokish
- Steadman Hawkins Clinic of the Carolinas, Greenville, South Carolina, U.S.A.,The Hawkins Foundation, Greenville, South Carolina, U.S.A.,Address correspondence to John M. Tokish, M.D., Steadman Hawkins Clinic of the Carolinas, 200 Patewood Dr, Ste C100, Greenville, SC 29615, U.S.A.Steadman Hawkins Clinic of the Carolinas200 Patewood DrSte C100GreenvilleSC29615U.S.A.
| |
Collapse
|
41
|
Anterior Capsule Reconstruction Technique With an Acellular Dermal Allograft. Arthrosc Tech 2017; 6:e1945-e1952. [PMID: 29430395 PMCID: PMC5799494 DOI: 10.1016/j.eats.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/12/2017] [Indexed: 02/03/2023] Open
Abstract
An irreparable subscapularis may have a debilitating influence on glenohumeral joint biomechanics. Traditional treatment approaches are focused on tendon transfers, among which the most popular are pectoralis major and latissimus dorsi transfers. However, these techniques present significant retear rates, possible nerve injuries, and altered biomechanics. Other techniques like tibialis anterior or iliotibial autograft grafting also have many reported failures. We describe an all-arthroscopic anterior capsule reconstruction technique with an acellular dermal graft.
Collapse
|
42
|
The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol 2017; 14:540-552. [PMID: 28698662 DOI: 10.1038/nrgastro.2017.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis and secretion of components that constitute the extracellular matrix (ECM) by resident cell types occur at the earliest stages of embryonic development, and continue throughout life in both healthy and diseased physiological states. The ECM consists of a complex mixture of insoluble and soluble functional components that are arranged in a tissue-specific 3D ultrastructure, and it regulates numerous biological processes, including angiogenesis, innervation and stem cell differentiation. Owing to its composition and influence on embryonic development, as well as cellular and organ homeostasis, the ECM is an ideal therapeutic substrate for the repair of damaged or diseased tissues. Biologic scaffold materials that are composed of ECM have been used in various surgical and tissue-engineering applications. The gastrointestinal (GI) tract presents distinct challenges, such as diverse pH conditions and the requirement for motility and nutrient absorption. Despite these challenges, the use of homologous and heterologous ECM bioscaffolds for the focal or segmental reconstruction and regeneration of GI tissue has shown promise in early preclinical and clinical studies. This Review discusses the importance of tissue-specific ECM bioscaffolds and highlights the major advances that have been made in regenerative medicine strategies for the reconstruction of functional GI tissues.
Collapse
|
43
|
Huleihel L, Dziki JL, Bartolacci JG, Rausch T, Scarritt ME, Cramer MC, Vorobyov T, LoPresti ST, Swineheart IT, White LJ, Brown BN, Badylak SF. Macrophage phenotype in response to ECM bioscaffolds. Semin Immunol 2017; 29:2-13. [PMID: 28736160 DOI: 10.1016/j.smim.2017.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023]
Abstract
Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ+LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers.
Collapse
Affiliation(s)
- Luai Huleihel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA
| | - Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph G Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theresa Rausch
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle E Scarritt
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA
| | - Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana Vorobyov
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biotechnology Engineering, Ort Braude College of Engineering, Karmiel, Israel
| | - Samuel T LoPresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ilea T Swineheart
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J White
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Dale TP, Mazher S, Webb WR, Zhou J, Maffulli N, Chen GQ, El Haj AJ, Forsyth NR. Tenogenic Differentiation of Human Embryonic Stem Cells. Tissue Eng Part A 2017; 24:361-368. [PMID: 28548630 DOI: 10.1089/ten.tea.2017.0017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tendon healing is complex to manage because of the limited regeneration capacity of tendon tissue; stem cell-based tissue engineering approaches may provide alternative healing strategies. We sought to determine whether human embryonic stem cells (hESC) could be induced to differentiate into tendon-like cells by the addition of exogenous bone morphogenetic protein (BMP)12 (growth differentiation factor[GDF]7) and BMP13 (GDF6). hESC (SHEF-1) were maintained with or without BMP12/13 supplementation, or supplemented with BMP12/13 and the Smad signaling cascade blocking agent, dorsomorphin. Primary rat tenocytes were included as a positive control in immunocytochemistry analysis. A tenocyte-like elongated morphology was observed in hESC after 40-days continuous supplementation with BMP12/13 and ascorbic acid (AA). These cells displayed a tenomodulin expression pattern and morphology consistent with that of the primary tenocyte control. Analysis of tendon-linked gene transcription in BMP12/13 supplemented hESC demonstrated consistent expression of COL1A2, COL3A1, DCN, TNC, THBS4, and TNMD levels. Conversely, when hESCs were cultured in the presence of BMP12/13 and dorsomorphin COL3A1, DCN, and TNC gene expression and tendon matrix formation were inhibited. Taken together, we have demonstrated that hESCs are responsive to tenogenic induction via BMP12/13 in the presence of AA. The directed in vitro generation of tenocytes from pluripotent stem cells may facilitate the development of novel repair approaches for this difficult to heal tissue.
Collapse
Affiliation(s)
- Tina P Dale
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Shazia Mazher
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - William R Webb
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Jing Zhou
- 2 School of Life Science, Tsinghua University , Beijing, China
| | - Nicola Maffulli
- 3 Centre for Sport and Exercise Medicine, Queen Mary University of London , United Kingdom
| | - Guo-Qiang Chen
- 2 School of Life Science, Tsinghua University , Beijing, China
| | - Alicia J El Haj
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicholas R Forsyth
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| |
Collapse
|
45
|
Liu Y, Suen CW, Zhang JF, Li G. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat 2017; 9:28-42. [PMID: 29662797 PMCID: PMC5822963 DOI: 10.1016/j.jot.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Tendon is a tissue that transmits force from muscle to bone. Chronic or acute tendon injuries are very common, and are always accompanied by pain and a limited range of motion in patients. In clinical settings, management of tendon injuries still remains a big challenge. Cell therapies, such as the application of stem cells for tenogenic differentiation, were suggested to be an ideal strategy for clinical translation. However, there is still a lack of specific methods for tenogenic differentiation due to the limited understanding of tendon biology currently. This review focuses on the summary of current published strategies for tenogenic differentiation, such as the application of growth factors, mechanical stimulation, biomaterials, coculture, or induced pluripotent stem cells. Current clinical applications of stem cells for treatment of tendon injuries and their limitations have also been discussed in this review.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Wai Suen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jin-fang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, China.Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong Kong30-32 Ngan Shing StreetShatinNew TerritoriesHong Kong, China
| |
Collapse
|
46
|
Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs. Differentiation 2017; 95:44-53. [PMID: 28319735 DOI: 10.1016/j.diff.2017.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Tendon injuries are severe burdens in clinics. The poor tendon healing is related to an ineffective response of resident cells and inadequate vascularization. Thanks to the high proliferation and multi-lineage differentiation capability, bone marrow-derived mesenchymal stem cells (BMSCs) are a promising cell source to support the tendon repair. To date, the association of various growth factors to induce the in vitro tenogenic differentiation of multipotent progenitor cells is poorly investigated. This study aimed to investigate the tenogenic differentiation of rabbit BMSCs by testing the combination of bone morphogenetic proteins (BMP-12 and 14) with transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) both in 2D and 3D cultures within fibrin-based constructs. After 7 and 14 days, the tenogenic differentiation was assessed by analyzing cell metabolism and collagen content, the gene expression of tenogenic markers and the histological cell distribution and collagen deposition within 3D constructs. Our results demonstrated that the association of BMP-14 with TGF-β3 and VEGF enhanced the BMSC tenogenic differentiation both in 2D and 3D cultures. This study supports the use of fibrin as hydrogel-based matrix to generate spheroids loaded with tenogenic differentiated BMSCs that could be used to treat tendon lesions in the future.
Collapse
|
47
|
Bellini D, Cencetti C, Sacchetta AC, Battista AM, Martinelli A, Mazzucco L, Scotto D’Abusco A, Matricardi P. PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. J Mech Behav Biomed Mater 2016; 64:151-60. [DOI: 10.1016/j.jmbbm.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
48
|
Arthroscopic Patch Augmentation for Rotator Cuff Repair. TECHNIQUES IN SHOULDER AND ELBOW SURGERY 2016. [DOI: 10.1097/bte.0000000000000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Parchi PD, Vittorio O, Andreani L, Battistini P, Piolanti N, Marchetti S, Poggetti A, Lisanti M. Nanoparticles for Tendon Healing and Regeneration: Literature Review. Front Aging Neurosci 2016; 8:202. [PMID: 27597828 PMCID: PMC4992689 DOI: 10.3389/fnagi.2016.00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties. Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial, and anti-inflammatory properties) to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration.
Collapse
Affiliation(s)
- Paolo D Parchi
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW AustraliaSydney, NSW, Australia; Australian Centre for NanoMedicine, UNSW AustraliaSydney, NSW, Australia
| | - Lorenzo Andreani
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Pietro Battistini
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Nicola Piolanti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Stefano Marchetti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Andrea Poggetti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Michele Lisanti
- First Orthopaedic Division, Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa Pisa, Italy
| |
Collapse
|
50
|
Sandri M, Filardo G, Kon E, Panseri S, Montesi M, Iafisco M, Savini E, Sprio S, Cunha C, Giavaresi G, Veronesi F, Fini M, Salvatore L, Sannino A, Marcacci M, Tampieri A. Fabrication and Pilot In Vivo Study of a Collagen-BDDGE-Elastin Core-Shell Scaffold for Tendon Regeneration. Front Bioeng Biotechnol 2016; 4:52. [PMID: 27446909 PMCID: PMC4923187 DOI: 10.3389/fbioe.2016.00052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/03/2016] [Indexed: 11/13/2022] Open
Abstract
The development of bio-devices for complete regeneration of ligament and tendon tissues is presently one of the biggest challenges in tissue engineering. Such device must simultaneously possess optimal mechanical performance, suitable porous structure, and biocompatible microenvironment. This study proposes a novel collagen-BDDGE-elastin (CBE)-based device for tendon tissue engineering, by the combination of two different modules: (i) a load-bearing, non-porous, “core scaffold” developed by braiding CBE membranes fabricated via an evaporative process and (ii) a hollow, highly porous, “shell scaffold” obtained by uniaxial freezing followed by freeze-drying of CBE suspension, designed to function as a physical guide and reservoir of cells to promote the regenerative process. Both core and shell materials demonstrated good cytocompatibility in vitro, and notably, the porous shell architecture directed cell alignment and population within the sample. Finally, a prototype of the core module was implanted in a rat tendon lesion model, and histological analysis demonstrated its safety, biocompatibility, and ability to induce tendon regeneration. Overall, our results indicate that such device may have the potential to support and induce in situ tendon regeneration.
Collapse
Affiliation(s)
- Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Giuseppe Filardo
- Biomechanics and Technology Innovation Laboratory, Rizzoli Orthopaedic Institute, II Orthopaedic and Traumatologic Clinic, Bologna, Italy; Nano-Biotechnology Laboratory, Rizzoli Orthopaedic Institute, II Orthopaedic and Traumatologic Clinic, Bologna, Italy
| | - Elizaveta Kon
- Biomechanics and Technology Innovation Laboratory, Rizzoli Orthopaedic Institute, II Orthopaedic and Traumatologic Clinic, Bologna, Italy; Nano-Biotechnology Laboratory, Rizzoli Orthopaedic Institute, II Orthopaedic and Traumatologic Clinic, Bologna, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Elisa Savini
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy; Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Department RIT Rizzoli-Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy; Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Department RIT Rizzoli-Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento , Lecce , Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento , Lecce , Italy
| | - Maurilio Marcacci
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council , Faenza , Italy
| |
Collapse
|