1
|
Pushkaran AC, Arabi AA. A review on point mutations via proton transfer in DNA base pairs in the absence and presence of electric fields. Int J Biol Macromol 2024; 277:134051. [PMID: 39069038 DOI: 10.1016/j.ijbiomac.2024.134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This comprehensive review focuses on spontaneous mutations that may occur during DNA replication, the fundamental process responsible for transferring genetic information. In 1963, Löwdin postulated that these mutations are primarily a result of proton transfer reactions within the hydrogen-bonded DNA base pairs. The single and double proton transfer reactions within the base pairs in DNA result in zwitterions and rare tautomers, respectively. For persistent mutations, these products must be generated at high rates and should be thermodynamically stable. This review covers the proton transfer reactions studied experimentally and computationally. The review also examines the influence of externally applied electric fields on the thermodynamics and kinetics of proton transfer reactions within DNA base pairs, and their biological implications.
Collapse
Affiliation(s)
- Anju Choorakottayil Pushkaran
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates
| | - Alya A Arabi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates.
| |
Collapse
|
2
|
Zasedateleva OA, Surzhikov SA, Kuznetsova VE, Shershov VE, Barsky VE, Zasedatelev AS, Chudinov AV. Non-Covalent Interactions between dUTP C5-Substituents and DNA Polymerase Decrease PCR Efficiency. Int J Mol Sci 2023; 24:13643. [PMID: 37686447 PMCID: PMC10487964 DOI: 10.3390/ijms241713643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The approach based on molecular modeling was developed to study dNTP derivatives characterized by new polymerase-specific properties. For this purpose, the relative efficiency of PCR amplification with modified dUTPs was studied using Taq, Tth, Pfu, Vent, Deep Vent, Vent (exo-), and Deep Vent (exo-) DNA polymerases. The efficiency of PCR amplification with modified dUTPs was compared with the results of molecular modeling using the known 3D structures of KlenTaq polymerase-DNA-dNTP complexes. The dUTPs were C5-modified with bulky functional groups (the Cy5 dye analogs) or lighter aromatic groups. Comparing the experimental data and the results of molecular modeling revealed the decrease in PCR efficiency in the presence of modified dUTPs with an increase in the number of non-covalent bonds between the substituents and the DNA polymerase (about 15% decrease per one extra non-covalent bond). Generalization of the revealed patterns to all the studied polymerases of the A and B families is discussed herein. The number of non-covalent bonds between the substituents and polymerase amino acid residues is proposed to be a potentially variable parameter for regulating enzyme activity.
Collapse
Affiliation(s)
- Olga A. Zasedateleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
3
|
Warman H, Slocombe L, Sacchi M. How proton transfer impacts hachimoji DNA. RSC Adv 2023; 13:13384-13396. [PMID: 37143915 PMCID: PMC10152326 DOI: 10.1039/d3ra00983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023] Open
Abstract
Hachimoji DNA is a synthetic nucleic acid extension of DNA, formed by an additional four bases, Z, P, S, and B, that can encode information and sustain Darwinian evolution. In this paper, we aim to look into the properties of hachimoji DNA and investigate the probability of proton transfer between the bases, resulting in base mismatch under replication. First, we present a proton transfer mechanism for hachimoji DNA, analogous to the one presented by Löwdin years prior. Then, we use density functional theory to calculate proton transfer rates, tunnelling factors and the kinetic isotope effect in hachimoji DNA. We determined that the reaction barriers are sufficiently low that proton transfer is likely to occur even at biological temperatures. Furthermore, the rates of proton transfer of hachimoji DNA are much faster than in Watson-Crick DNA due to the barrier for Z-P and S-B being 30% lower than in G-C and A-T. Suggesting that proton transfer occurs more frequently in hachimoji DNA than canonical DNA, potentially leading to a higher mutation rate.
Collapse
Affiliation(s)
- Harry Warman
- School of Physics and Maths, University of Surrey Guildford GU2 7XH UK
| | - Louie Slocombe
- School of Chemistry and Chemical Engineering, University of Surrey Guildford GU2 7XH UK
| | - Marco Sacchi
- School of Chemistry and Chemical Engineering, University of Surrey Guildford GU2 7XH UK
| |
Collapse
|
4
|
Jena NR, Das P, Shukla PK. Complementary base pair interactions between different rare tautomers of the second-generation artificial genetic alphabets. J Mol Model 2023; 29:125. [PMID: 37014428 DOI: 10.1007/s00894-023-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The functionality of a semisynthetic DNA in the biological environment will depend on the base pair nature of its complementary base pairs. To understand this, base pair interactions between complementary bases of recently proposed eight second-generation artificial nucleobases are studied herein by considering their rare tautomeric conformations and a dispersion-corrected density functional theoretic method. It is found that the binding energies of two hydrogen-bonded complementary base pairs are more negative than those of the three hydrogen-bonded base pairs. However, as the former base pairs are endothermic, the semisynthetic duplex DNA would involve the latter base pairs.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India
| | - P K Shukla
- Department of Physics, Assam University, Silchar, 788011, India
| |
Collapse
|
5
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Fordham JM, Piacentini P, Santagostino M. Pd-Catalyzed Ring-Opening/Arylation/Cyclization of 2-Aminothiazole Derivatives Provides Modular Access to Isocytosine Analogues. J Org Chem 2022; 87:12688-12697. [PMID: 36075053 DOI: 10.1021/acs.joc.2c01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a Pd-catalyzed ring-opening/arylation/cyclization reaction sequence between 2-aminothiazoles and aryl (pseudo)halides that provides modular access to isocytosine analogues. The scope of the reaction is broad with respect to both coupling partners and a robustness test demonstrated the functional group tolerance of the methodology. Visual kinetic analysis revealed that the product may inhibit catalyst turnover for some substrates.
Collapse
Affiliation(s)
- James M Fordham
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Paolo Piacentini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Santagostino
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| |
Collapse
|
7
|
Jena NR. Rare Tautomers of Artificially Expanded Genetic Letters and their Effects on the Base pair Stabilities. Chemphyschem 2022; 23:e202100908. [PMID: 35029036 DOI: 10.1002/cphc.202100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 11/11/2022]
Abstract
To expand the existing genetic letters, it is necessary to design robust nucleotides that can function naturally in living cells. Therefore, it is desirable to examine the roles of recently proposed second-generation artificially expanded genetic letters in producing stable duplex DNA. Here, a reliable dispersion-corrected density functional theory method is used to understand the electronic structures and properties of different rare tautomers of proposed expanded genetic letters and their effects on the base pair stabilities in the duplex DNA. It is found that the rare tautomers are not only stable in the aqueous medium but can also base pair with natural bases to produce stable mispairs. Except for J and V, all the artificial genetic letters are found to produce mispairs that are about 1-7 kcal/mol more stable than their complementary counterparts. They are also appreciably more stable than the naturally occurring G:C, A:T, and G:T pairs. The higher base pair stabilities are found to be mainly because of the polarity of monomers and attractive electrostatic interactions.
Collapse
Affiliation(s)
- N R Jena
- IIITDM Jabalpur, Discipline of Natural Sciences, Dumna Airport Road, Khamaria, India, 482005, Jabalpur, INDIA
| |
Collapse
|
8
|
Gheorghiu A, Coveney PV, Arabi AA. The influence of base pair tautomerism on single point mutations in aqueous DNA. Interface Focus 2020; 10:20190120. [PMID: 33178413 PMCID: PMC7653342 DOI: 10.1098/rsfs.2019.0120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The relationship between base pair hydrogen bond proton transfer and the rate of spontaneous single point mutations at ambient temperatures and pressures in aqueous DNA is investigated. By using an ensemble-based multiscale computational modelling method, statistically robust rates of proton transfer for the A:T and G:C base pairs within a solvated DNA dodecamer are calculated. Several different proton transfer pathways are observed within the same base pair. It is shown that, in G:C, the double proton transfer tautomer is preferred, while the single proton transfer process is favoured in A:T. The reported range of rate coefficients for double proton transfer is consistent with recent experimental data. Notwithstanding the approximately 1000 times more common presence of single proton transfer products from A:T, observationally there is bias towards G:C to A:T mutations in a wide range of living organisms. We infer that the double proton transfer reactions between G:C base pairs have a negligible contribution towards this bias for the following reasons: (i) the maximum half-life of the G*:C* tautomer is in the range of picoseconds, which is significantly smaller than the milliseconds it takes for DNA to unwind during replication, (ii) statistically, the majority of G*:C* tautomers revert back to their canonical forms through a barrierless process, and (iii) the thermodynamic instability of the tautomers with respect to the canonical base pairs. Through similar reasoning, we also deduce that proton transfer in the A:T base pair does not contribute to single point mutations in DNA.
Collapse
Affiliation(s)
- A Gheorghiu
- Centre for Computational Science, University College London, London, UK
| | - P V Coveney
- Centre for Computational Science, University College London, London, UK.,Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - A A Arabi
- Centre for Computational Science, University College London, London, UK.,College of Medicine and Health Sciences, Biochemistry Department, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
10
|
PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: Synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases. Bioorg Chem 2020; 99:103829. [PMID: 32299018 DOI: 10.1016/j.bioorg.2020.103829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCH2NHCOCH2 linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated. For all the polymerases used, the yield of the modified PCR product was significantly increased with increasing hydrophilicity of the aromatic hydrocarbon substituent. In particular, for the above polymerases, the efficiency of the incorporation of dUMPs modified with the most hydrophilic of the studied aromatic hydrocarbon substituents, a 4-hydroxyphenyl residue, was 60-85% of the efficiency of dTMP incorporation. At the same time, the relative efficiencies of the incorporation of dUMPs modified with 2-, 4-methoxyphenyl, phenyl and 4-nitrophenyl substituents ranged from 20 to 50% and were 2-18% for the 1-naphthalene and 4-biphenyl groups, which were the most hydrophobic of the studied aromatic hydrocarbon substituents.
Collapse
|
11
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
12
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
13
|
Mass-spectrometry analysis of modifications at DNA termini induced by DNA polymerases. Sci Rep 2017; 7:6674. [PMID: 28751641 PMCID: PMC5532294 DOI: 10.1038/s41598-017-06136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Non-natural nucleotide substrates are widely used in the enzymatic synthesis of modified DNA. The terminal activity of polymerases in the presence of modified nucleotides is an important, but poorly characterized, aspect of enzymatic DNA synthesis. Here, we studied different types of polymerase activity at sequence ends using extendable and non-extendable synthetic models in the presence of the Cy5-dUTP analog Y. In primer extension reactions with selected exonuclease-deficient polymerases, nucleotide Y appeared to be a preferential substrate for non-templated 3'-tailing, as determined by MALDI mass-spectrometry and gel-electrophoresis. This result was further confirmed by the 3'-tailing of a non-extendable hairpin oligonucleotide model. Additionally, DNA polymerases induce an exchange of the 3' terminal thymidine for a non-natural nucleotide via pyrophosphorolysis in the presence of inorganic pyrophosphate. In primer extension reactions, the proofreading polymerases Vent, Pfu, and Phusion did not support the synthesis of Y-modified primer strand. Nevertheless, Pfu and Phusion polymerases were shown to initiate terminal nucleotide exchange at the template. Unlike non-proofreading polymerases, these two enzymes recruit 3'-5' exonuclease functions to cleave the 3' terminal thymidine in the absence of pyrophosphate.
Collapse
|
14
|
Capua M, Perrone S, Bona F, Salomone A, Troisi L. A Direct Synthesis of Isocytosine Analogues by Carbonylative Coupling of α-Chloro Ketones and Guanidines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Martina Capua
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Fabio Bona
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; University of Salento; 73100 Lecce Prov.le Lecce-Monteroni Italy
| |
Collapse
|
15
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
17
|
Guga P, Tomaszewska A. Unexpected loss of stereoselectivity in ring-opening reaction of 2-alkoxy-2-thio-1,3,2-oxathiaphospholanes with a pyrophosphate anion. Chirality 2014; 27:115-22. [PMID: 25403657 DOI: 10.1002/chir.22398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/08/2014] [Indexed: 11/05/2022]
Abstract
A reaction of DBU promoted ring opening in nucleoside-3'-O- and nucleoside-5'-O-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane) monomers with a pyrophosphate or a methylenediphosphonate anion proceeds with substantial loss of stereoselectivity. Depending on the absolute configuration of the phosphorus atom, so far widely accepted the stereoretentive mechanism of condensation is accompanied by a stereoinvertive one, most likely employing an intramolecular ligand-ligand exchange in an uncharged intermediate.
Collapse
Affiliation(s)
- Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Łodź, Poland
| | | |
Collapse
|