1
|
Frempong SB, Salbreiter M, Mostafapour S, Pistiki A, Bocklitz TW, Rösch P, Popp J. Illuminating the Tiny World: A Navigation Guide for Proper Raman Studies on Microorganisms. Molecules 2024; 29:1077. [PMID: 38474589 PMCID: PMC10934050 DOI: 10.3390/molecules29051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless, a lot of different parameters need to be considered to establish a reliable database capable of identifying real-world samples such as medical or environmental probes. In this review, the establishment of such reliable databases with the proper design in microbiological Raman studies is demonstrated, shining a light into all the parts that require attention. Aspects such as the strain selection, sample preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is to serve as a guide for the design of microbiological Raman studies that can support the establishment of this method in different fields.
Collapse
Affiliation(s)
- Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sara Mostafapour
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thomas W. Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Rebrosova K, Bernatová S, Šiler M, Mašek J, Samek O, Ježek J, Kizovsky M, Holá V, Zemanek P, Růžička F. Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers. Microbiol Spectr 2023; 11:e0002823. [PMID: 37078868 PMCID: PMC10269886 DOI: 10.1128/spectrum.00028-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections. We included 305 microbial strains of 28 species acting as causative agents of bloodstream infections. Raman spectroscopy identified the strains from grown colonies, with 2.8% and 7% incorrectly identified strains using the support vector machine algorithm based on centered and uncentred principal-component analyses, respectively. We combined Raman spectroscopy with optical tweezers to speed up the process and captured and analyzed microbes directly from spiked human serum. The pilot study suggests that it is possible to capture individual microbial cells from human serum and characterize them by Raman spectroscopy with notable differences among different species. IMPORTANCE Bloodstream infections are among the most common causes of hospitalizations and are often life-threatening. To establish an effective therapy for a patient, the timely identification of the causative agent and characterization of its antimicrobial susceptibility and resistance profiles are essential. Therefore, our multidisciplinary team of microbiologists and physicists presents a method that reliably, rapidly, and inexpensively identifies pathogens causing bloodstream infections-Raman spectroscopy. We believe that it might become a valuable diagnostic tool in the future. Combined with optical trapping, it offers a new approach where the microorganisms are individually trapped in a noncontact way by optical tweezers and investigated by Raman spectroscopy directly in a liquid sample. Together with the automatic processing of measured Raman spectra and comparison with a database of microorganisms, it makes the whole identification process almost real time.
Collapse
Affiliation(s)
- Katarina Rebrosova
- Department of Microbiology, Faculty of Medicine of Masaryk University, St. Anne’s University Hospital, Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Mašek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Ježek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Kizovsky
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine of Masaryk University, St. Anne’s University Hospital, Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine of Masaryk University, St. Anne’s University Hospital, Brno, Czech Republic
| |
Collapse
|
3
|
Bhunia AK, Singh AK, Parker K, Applegate BM. Petri-plate, bacteria, and laser optical scattering sensor. Front Cell Infect Microbiol 2022; 12:1087074. [PMID: 36619754 PMCID: PMC9813400 DOI: 10.3389/fcimb.2022.1087074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Classical microbiology has paved the path forward for the development of modern biotechnology and microbial biosensing platforms. Microbial culturing and isolation using the Petri plate revolutionized the field of microbiology. In 1887, Julius Richard Petri invented possibly the most important tool in microbiology, the Petri plate, which continues to have a profound impact not only on reliably isolating, identifying, and studying microorganisms but also manipulating a microbe to study gene expression, virulence properties, antibiotic resistance, and production of drugs, enzymes, and foods. Before the recent advances in gene sequencing, microbial identification for diagnosis relied upon the hierarchal testing of a pure culture isolate. Direct detection and identification of isolated bacterial colonies on a Petri plate with a sensing device has the potential for revolutionizing further development in microbiology including gene sequencing, pathogenicity study, antibiotic susceptibility testing , and for characterizing industrially beneficial traits. An optical scattering sensor designated BARDOT (bacterial rapid detection using optical scattering technology) that uses a red-diode laser, developed at the beginning of the 21st century at Purdue University, some 220 years after the Petri-plate discovery can identify and study bacteria directly on the plate as a diagnostic tool akin to Raman scattering and hyperspectral imaging systems for application in clinical and food microbiology laboratories.
Collapse
Affiliation(s)
- Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States,*Correspondence: Arun K. Bhunia,
| | - Atul K. Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Clear Labs, San Carlos, CA, United States
| | - Kyle Parker
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bruce M. Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Rebrosova K, Samek O, Kizovsky M, Bernatova S, Hola V, Ruzicka F. Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front Cell Infect Microbiol 2022; 12:866463. [PMID: 35531343 PMCID: PMC9072635 DOI: 10.3389/fcimb.2022.866463] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.
Collapse
Affiliation(s)
- Katarina Rebrosova
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne’s University Hospital, Brno, Czechia
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Martin Kizovsky
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Silvie Bernatova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Veronika Hola
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne’s University Hospital, Brno, Czechia
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
5
|
Rebrošová K, Bernatová S, Šiler M, Uhlirova M, Samek O, Ježek J, Holá V, Růžička F, Zemanek P. Raman spectroscopy-a tool for rapid differentiation among microbes causing urinary tract infections. Anal Chim Acta 2022; 1191:339292. [PMID: 35033248 DOI: 10.1016/j.aca.2021.339292] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Urinary tract infections belong to the most common infections in the world. Besides community-acquired infections, nosocomial infections pose a high risk especially for patients having indwelling catheters, undergoing urological surgeries or staying at hospital for prolonged time. They can be often complicated by antimicrobial resistance and/or biofilm formation. Therefore, a rapid diagnostic tool enabling timely identification of a causative agent and its susceptibility to antimicrobials is a need. Raman spectroscopy appears to be a suitable method that allows rapid differentiation among microbes and provides a space for further analyses, such as determination of capability of biofilm formation or antimicrobial susceptibility/resistance in tested strains. Our work here presents a possibility to differ among most common microbes causing urinary tract infections (belonging to 20 species). We tested 254 strains directly from colonies grown on Mueller-Hinton agar plates. The results show that it is possible to distinguish among the tested species using Raman spectroscopy, which proves its great potential for future use in clinical diagnostics. Moreover, we present here a pilot study of a real-time analysis and identification (in less than 10 min) of single microbial cells directly in urine employing optical tweezers combined with Raman spectroscopy.
Collapse
Affiliation(s)
- Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic.
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic.
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic.
| | - Magdalena Uhlirova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic.
| | - Jan Ježek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic.
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic.
| |
Collapse
|
6
|
Kriem LS, Wright K, Ccahuana-Vasquez RA, Rupp S. Mapping of a Subgingival Dual-Species Biofilm Model Using Confocal Raman Microscopy. Front Microbiol 2021; 12:729720. [PMID: 34675902 PMCID: PMC8525910 DOI: 10.3389/fmicb.2021.729720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Techniques for continuously monitoring the formation of subgingival biofilm, in relation to the determination of species and their accumulation over time in gingivitis and periodontitis, are limited. In recent years, advancements in the field of optical spectroscopic techniques have provided an alternative for analyzing three-dimensional microbiological structures, replacing the traditional destructive or biofilm staining techniques. In this work, we have demonstrated that the use of confocal Raman spectroscopy coupled with multivariate analysis provides an approach to spatially differentiate bacteria in an in vitro model simulating a subgingival dual-species biofilm. The present study establishes a workflow to evaluate and differentiate bacterial species in a dual-species in vitro biofilm model, using confocal Raman microscopy (CRM). Biofilm models of Actinomyces denticolens and Streptococcus oralis were cultured using the “Zürich in vitro model” and were analyzed using CRM. Cluster analysis was used to spatially differentiate and map the biofilm model over a specified area. To confirm the clustering of species in the cultured biofilm, confocal laser scanning microscopy (CLSM) was coupled with fluorescent in vitro hybridization (FISH). Additionally, dense bacteria interface area (DBIA) samples, as an imitation of the clusters in a biofilm, were used to test the developed multivariate differentiation model. This confirmed model was successfully used to differentiate species in a dual-species biofilm and is comparable to morphology. The results show that the developed workflow was able to identify main clusters of bacteria based on spectral “fingerprint region” information from CRM. Using this workflow, we have demonstrated that CRM can spatially analyze two-species in vitro biofilms, therefore providing an alternative technique to map oral multi-species biofilm models.
Collapse
Affiliation(s)
- Lukas Simon Kriem
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | | | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| |
Collapse
|
7
|
Dinçtürk E, Tanrıkul TT. First preliminary study on identification of bacterial fish pathogens with Raman spectroscopy. Anim Biotechnol 2021:1-9. [PMID: 34559037 DOI: 10.1080/10495398.2021.1979567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Accurate and rapid determination of bacterial disease agents of fish is an important step for sustainable and efficient aquaculture production. In general, biochemical and molecular methods are used for pathogen detection but they are usually time-consuming and required qualified personnel. Recently spectroscopic methods are preferred in clinical and food microbiology and declared as a promising alternative method for pathogens diagnosis with many advantages. In this study, the significant spectra of three important bacterial fish pathogens (Lactococcus garvieae, Vibrio anguillarum and Yersinia ruckeri) were determined by Raman spectroscopy. The first data of the pathogens were obtained and the distinctive differences in polysaccharides, nucleic acids, fatty acids and amino acids were identified. This preliminary study aimed to be pioneer for further studies in aquaculture and veterinary microbiology toward developing an alternative method for routine identification.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Turkey
| | - Tevfik Tansel Tanrıkul
- Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
8
|
Němcová A, Gonová D, Samek O, Sipiczki M, Breierová E, Márová I. The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts. Microorganisms 2021; 9:microorganisms9020277. [PMID: 33572773 PMCID: PMC7912579 DOI: 10.3390/microorganisms9020277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Raman spectroscopy is a universal method designed for the analysis of a wide range of physical, chemical and biological systems or various surfaces. This technique is suitable to monitor various components of cells, tissues or microorganisms. The advantages include very fast non-contact and non-destructive analysis and no or minimal need for sample treatment. The yeasts Metschnikowia can be considered as industrially usable producers of pulcherrimin or single-cell lipids, depending on cultivation conditions and external stress. In the present study, Raman spectroscopy was used as an effective tool to identify both pulcherrimin and lipids in single yeast cells. The analysis of pulcherrimin is very demanding; so far, there is no optimal procedure to analyze or identify this pigment. Based on results, the strong dependence of pulcherrimin production on the ferric ion concentration was found with the highest yield in media containing 0.1 g/L iron. Further, production of lipids in Metschnikowia cells was studied at different temperatures and C:N ratios, using Raman spectroscopy to follow fatty acids composition, under different regimes, by monitoring the iodine number. The results of Raman spectroscopy were comparable with the fatty acid analysis obtained by gas chromatography. This study therefore supported use of Raman spectroscopy for biotechnological applications as a simple tool in the identification and analysis both the pulcherrimin and microbial lipids. This method provides a quick and relatively accurate estimation of targeted metabolites with minimal sample modification and allows to monitor metabolic changes over time of cultivation.
Collapse
Affiliation(s)
- Andrea Němcová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (D.G.); (I.M.)
- Correspondence: ; Tel.: +420-541-149-419
| | - Dominika Gonová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (D.G.); (I.M.)
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic;
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - Emilia Breierová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (D.G.); (I.M.)
| |
Collapse
|
9
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Kriem LS, Wright K, Ccahuana-Vasquez RA, Rupp S. Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models. PLoS One 2020; 15:e0232912. [PMID: 32392236 PMCID: PMC7213720 DOI: 10.1371/journal.pone.0232912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the 'Zürich Model' were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.
Collapse
Affiliation(s)
- Lukas Simon Kriem
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Kevin Wright
- Procter & Gamble, Egham, England, United Kingdom
| | | | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
11
|
García-Timermans C, Rubbens P, Heyse J, Kerckhof FM, Props R, Skirtach AG, Waegeman W, Boon N. Discriminating Bacterial Phenotypes at the Population and Single-Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting. Cytometry A 2019; 97:713-726. [PMID: 31889414 DOI: 10.1002/cyto.a.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Investigating phenotypic heterogeneity can help to better understand and manage microbial communities. However, characterizing phenotypic heterogeneity remains a challenge, as there is no standardized analysis framework. Several optical tools are available, such as flow cytometry and Raman spectroscopy, which describe optical properties of the individual cell. In this work, we compare Raman spectroscopy and flow cytometry to study phenotypic heterogeneity in bacterial populations. The growth stages of three replicate Escherichia coli populations were characterized using both technologies. Our findings show that flow cytometry detects and quantifies shifts in phenotypic heterogeneity at the population level due to its high-throughput nature. Raman spectroscopy, on the other hand, offers a much higher resolution at the single-cell level (i.e., more biochemical information is recorded). Therefore, it can identify distinct phenotypic populations when coupled with analyses tailored toward single-cell data. In addition, it provides information about biomolecules that are present, which can be linked to cell functionality. We propose a computational workflow to distinguish between bacterial phenotypic populations using Raman spectroscopy and validated this approach with an external data set. We recommend using flow cytometry to quantify phenotypic heterogeneity at the population level, and Raman spectroscopy to perform a more in-depth analysis of heterogeneity at the single-cell level. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Peter Rubbens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Jasmine Heyse
- CMET, Center for Microbial Technology and Ecology, Ghent University, Ghent, Belgium
| | | | - Ruben Props
- CMET, Center for Microbial Technology and Ecology, Ghent University, Ghent, Belgium
| | - Andre G Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Nico Boon
- CMET, Center for Microbial Technology and Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. Identification of ability to form biofilm in Candida parapsilosis and Staphylococcus epidermidis by Raman spectroscopy. Future Microbiol 2019; 14:509-517. [PMID: 31025881 DOI: 10.2217/fmb-2018-0297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: Finding rapid, reliable diagnostic methods is a big challenge in clinical microbiology. Raman spectroscopy is an optical method used for multiple applications in scientific fields including microbiology. This work reports its potential in identifying biofilm positive strains of Candida parapsilosis and Staphylococcus epidermidis. Materials & methods: We tested 54 S. epidermidis strains (23 biofilm positive, 31 negative) and 51 C. parapsilosis strains (27 biofilm positive, 24 negative) from colonies on Mueller-Hinton agar plates, using Raman spectroscopy. Results: The accuracy was 98.9% for C. parapsilosis and 96.1% for S. epidermidis. Conclusion: The method showed great potential for identifying biofilm positive bacterial and yeast strains. We suggest that Raman spectroscopy might become a useful aid in clinical diagnostics.
Collapse
Affiliation(s)
- Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine, Masaryk University & St. Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno 61264, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno 61264, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University & St. Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno 61264, Czech Republic
| | - Jan Ježek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno 61264, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno 61264, Czech Republic
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine, Masaryk University & St. Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| |
Collapse
|
14
|
Boschetto F, Toyama N, Horiguchi S, Bock RM, McEntire BJ, Adachi T, Marin E, Zhu W, Mazda O, Bal BS, Pezzotti G. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: II. Fourier transform infrared spectroscopy. Analyst 2018; 143:2128-2140. [DOI: 10.1039/c8an00234g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metabolic response of Gram-positiveStaphylococcus epidermidisbacteria to bioceramic substrates was probed by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Nami Toyama
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Satoshi Horiguchi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - B. Sonny Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| |
Collapse
|
15
|
Rapid identification of staphylococci by Raman spectroscopy. Sci Rep 2017; 7:14846. [PMID: 29093473 PMCID: PMC5665888 DOI: 10.1038/s41598-017-13940-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.
Collapse
|
16
|
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiol 2017; 12:881-890. [PMID: 28686040 DOI: 10.2217/fmb-2016-0224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIM Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. MATERIALS & METHODS For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. DISCUSSION & CONCLUSION The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.
Collapse
Affiliation(s)
- Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Martin Šiler
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Ota Samek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| | - Silvie Bernatová
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Jan Ježek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Pavel Zemánek
- ASCR, Institute of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine & St Anne's Faculty Hospital, Pekařská 53, Brno 65691, Czech Republic
| |
Collapse
|
17
|
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. SENSORS 2015; 15:29635-47. [PMID: 26610516 PMCID: PMC4701351 DOI: 10.3390/s151129635] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/09/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.
Collapse
|
18
|
Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 2015; 89:105-20. [PMID: 25895619 DOI: 10.1016/j.addr.2015.04.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 01/10/2023]
Abstract
Bacterial detection is a highly topical research area, because various fields of application will benefit from the progress being made. Consequently, new and innovative strategies which enable the investigation of complex samples, like body fluids or food stuff, and improvements regarding the limit of detection are of general interest. Within this review the prospects of Raman spectroscopy as a reliable tool for identifying bacteria in complex samples are discussed. The main emphasis of this work is on important aspects of applying Raman spectroscopy for the detection of bacteria like sample preparation and the identification process. Several approaches for a Raman compatible isolation of bacterial cells have been developed and applied to different matrices. Here, an overview of the limitations and possibilities of these methods is provided. Furthermore, the utilization of Raman spectroscopy for diagnostic purposes, food safety and environmental issues is discussed under a critical view.
Collapse
|
19
|
Samek O, Mlynariková K, Bernatová S, Ježek J, Krzyžánek V, Šiler M, Zemánek P, Růžička F, Holá V, Mahelová M. Candida parapsilosis biofilm identification by Raman spectroscopy. Int J Mol Sci 2014; 15:23924-35. [PMID: 25535081 PMCID: PMC4284798 DOI: 10.3390/ijms151223924] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.
Collapse
Affiliation(s)
- Ota Samek
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Katarina Mlynariková
- Department of Microbiology, Faculty of Medicine and St. Anne's Faculty Hospital, Brno 65691, Czech Republic.
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Jan Ježek
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Martin Šiler
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, Brno 61264, Czech Republic.
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine and St. Anne's Faculty Hospital, Brno 65691, Czech Republic.
| | - Veronika Holá
- Department of Microbiology, Faculty of Medicine and St. Anne's Faculty Hospital, Brno 65691, Czech Republic.
| | - Martina Mahelová
- Department of Microbiology, Faculty of Medicine and St. Anne's Faculty Hospital, Brno 65691, Czech Republic.
| |
Collapse
|
20
|
Espagnon I, Ostrovskii D, Mathey R, Dupoy M, Joly PL, Novelli-Rousseau A, Pinston F, Gal O, Mallard F, Leroux DF. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:027004. [PMID: 24522809 DOI: 10.1117/1.jbo.19.2.027004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/31/2013] [Indexed: 05/27/2023]
Abstract
Decreasing turnaround time is a paramount objective in clinical diagnosis. We evaluated the discrimination power of Raman spectroscopy when analyzing colonies from 80 strains belonging to nine bacterial and one yeast species directly on solid culture medium after 24-h (macrocolonies) and 6-h (microcolonies) incubation. This approach, that minimizes sample preparation and culture time, would allow resuming culture after identification to perform downstream antibiotic susceptibility testing. Correct identification rates measured for macrocolonies and microcolonies reached 94.1% and 91.5%, respectively, in a leave-one-strain-out cross-validation mode without any correction for possible medium interference. Large spectral differences were observed between macrocolonies and microcolonies, that were attributed to true biological differences. Our results, conducted on a very diversified panel of species and strains, were obtained by using simple and robust sample preparation and preprocessing procedures, while still confirming published results obtained by using more complex elaborated protocols. Instrumentation is simplified by the use of 532-nm laser excitation yielding a Raman signal in the visible range. It is, to our knowledge, the first side-by-side full classification study of microorganisms in the exponential and stationary phases confirming the excellent performance of Raman spectroscopy for early species-level identification of microorganisms directly from an agar culture.
Collapse
Affiliation(s)
- Isabelle Espagnon
- CEA, LIST, Département Métrologie, Instrumentation et Information, 91191 Gif-sur-Yvette, France
| | - Denis Ostrovskii
- bioMérieux, Technology Research Department, 5 rue des Berges, 38000 Grenoble, France
| | - Raphaël Mathey
- bioMérieux, Technology Research Department, 5 rue des Berges, 38000 Grenoble, France
| | - Mathieu Dupoy
- CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Pierre L Joly
- CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | - Frédéric Pinston
- bioMérieux, Technology Research Department, 5 rue des Berges, 38000 Grenoble, France
| | - Olivier Gal
- CEA, LIST, Département Métrologie, Instrumentation et Information, 91191 Gif-sur-Yvette, France
| | - Frédéric Mallard
- bioMérieux, Technology Research Department, 5 rue des Berges, 38000 Grenoble, France
| | - Denis F Leroux
- bioMérieux, Technology Research Department, Chemin de l'Orme, 69280 Marcy l'Etoile, France
| |
Collapse
|
21
|
James TM, Schlösser M, Lewis RJ, Fischer S, Bornschein B, Telle HH. Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting. APPLIED SPECTROSCOPY 2013; 67:949-959. [PMID: 23876734 DOI: 10.1366/12-06766] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An integrated concept for post-acquisition spectrum analysis was developed for in-line (real-time) and off-line applications that preserves absolute spectral quantification; after the initializing parameter setup, only minimal user intervention is required. This spectral evaluation suite is composed of a sequence of tasks specifically addressing cosmic ray removal, background subtraction, and peak analysis and fitting, together with the treatment of two-dimensional charge-coupled device array data. One may use any of the individual steps on their own, or may exclude steps from the chain if so desired. For the background treatment, the canonical rolling-circle filter (RCF) algorithm was adopted, but it was coupled with a Savitzky-Golay filtering step on the locus-array generated from a single RCF pass. This novel only-two-parameter procedure vastly improves on the RCF's deficiency to overestimate the baseline level in spectra with broad peak features. The peak analysis routine developed here is an only-two-parameter (amplitude and position) fitting algorithm that relies on numerical line shape profiles rather than on analytical functions. The overall analysis chain was programmed in National Instrument's LabVIEW; this software allows for easy incorporation of this spectrum analysis suite into any LabVIEW-managed instrument control, data-acquisition environment, or both. The strength of the individual tasks and the integrated program sequence are demonstrated for the analysis of a wide range of (although not necessarily limited to) Raman spectra of varying complexity and exhibiting nonanalytical line profiles. In comparison to other analysis algorithms and functions, our new approach for background subtraction, peak analysis, and fitting returned vastly improved quantitative results, even for "hidden" details in the spectra, in particular, for nonanalytical line profiles. All software is available for download.
Collapse
Affiliation(s)
- Timothy M James
- Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP United Kingdom
| | | | | | | | | | | |
Collapse
|