1
|
Mhaidly N, Barake N, Trelcat A, Journe F, Saussez S, Descamps G. Bufalin Suppresses Head and Neck Cancer Development by Modulating Immune Responses and Targeting the β-Catenin Signaling Pathway. Cancers (Basel) 2024; 16:2739. [PMID: 39123466 PMCID: PMC11311268 DOI: 10.3390/cancers16152739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/β-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.
Collapse
Affiliation(s)
- Nour Mhaidly
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Noura Barake
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| |
Collapse
|
2
|
Alfhili MA, Alsughayyir J. Bufalin reprograms erythrocyte lifespan through p38 MAPK and Rac1 GTPase. Toxicon 2024; 240:107636. [PMID: 38316294 DOI: 10.1016/j.toxicon.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Ample evidence indicates that bufalin (BFN), a cardiotonic steroid in Bufo toad toxin, possesses a potent anticancer activity mainly by stimulating apoptosis in cancer cells. Human red blood cells (RBCs) undergo eryptosis which contributes to a plethora of pathological conditions. No reports, however, have examined the potential toxicity of BFN to RBCs. This study aims to characterize the biochemical mechanisms governing the influence of BFN on the physiology and lifespan of RBCs. Isolated RBCs from healthy volunteers were exposed to anticancer concentrations of commercially available BFN from the skin of Bufo gargarizans (10-200 μM) for 24 h at 37 °C. Photometric assays were used to estimate hemolysis and hemolytic markers, and flow cytometry was used to detect eryptotic markers. Phosphatidylserine externalization was captured by fluorescein isothiocyante-labeled annexin V, cellular dimensions by light scatter patterns, and intracellular Ca2+ and reactive oxygen species (ROS) by fluorogenic dyes Fluo4/AM and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. BFN caused Ca2+-independent hemolysis and release of LDH, AST, CK, and K+, and increased annexin V-bound cells, cytosolic Ca2+, cell shrinkage, and ROS levels. BFN also disrupted Na+ and Mg2+ trafficking, and was sensitive to PEG 8000, sucrose, SB203580, and NSC 23766. In whole blood, BFN depleted hemoglobin stores, increased fragmented RBCs, and was selectively toxic to reticulocytes, lymphocytes, and platelets. In conclusion, BFN elicits premature RBC death, subject to regulation by p38 MAPK and Rac1 GTPase, and is detrimental to other peripheral blood cells. Altogether, these novel findings prompt cautious consideration of the toxin in anticancer therapy.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia.
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| |
Collapse
|
3
|
Soumoy L, Genbauffe A, Mouchart L, Sperone A, Trelcat A, Mukeba-Harchies L, Wells M, Blankert B, Najem A, Ghanem G, Saussez S, Journe F. ATP1A1 is a promising new target for melanoma treatment and can be inhibited by its physiological ligand bufalin to restore targeted therapy efficacy. Cancer Cell Int 2024; 24:8. [PMID: 38178183 PMCID: PMC10765859 DOI: 10.1186/s12935-023-03196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Despite advancements in treating metastatic melanoma, many patients exhibit resistance to targeted therapies. Our study focuses on ATP1A1, a sodium pump subunit associated with cancer development. We aimed to assess ATP1A1 prognostic value in melanoma patients and examine the impact of its ligand, bufalin, on melanoma cell lines in vitro and in vivo. High ATP1A1 expression (IHC) correlated with reduced overall survival in melanoma patients. Resistance to BRAF inhibitor was linked to elevated ATP1A1 levels in patient biopsies (IHC, qPCR) and cell lines (Western blot, qPCR). Additionally, high ATP1A1 mRNA expression positively correlated with differentiation/pigmentation markers based on data from The Cancer Genome Atlas (TCGA) databases and Verfaillie proliferative gene signature analysis. Bufalin specifically targeted ATP1A1 in caveolae, (proximity ligation assay) and influenced Src phosphorylation (Western blot), thereby disrupting multiple signaling pathways (phosphokinase array). In vitro, bufalin induced apoptosis in melanoma cell lines by acting on ATP1A1 (siRNA experiments) and, in vivo, significantly impeded melanoma growth using a nude mouse xenograft model with continuous bufalin delivery via an osmotic pump. In conclusion, our study demonstrates that ATP1A1 could serve as a prognostic marker for patient survival and a predictive marker for response to BRAF inhibitor therapy. By targeting ATP1A1, bufalin inhibited cell proliferation, induced apoptosis in vitro, and effectively suppressed tumor development in mice. Thus, our findings strongly support ATP1A1 as a promising therapeutic target, with bufalin as a potential agent to disrupt its tumor-promoting activity.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Institut National de la Santé et de la Recherche Médicale (INSERM) U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Aline Genbauffe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Lena Mouchart
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Alexandra Sperone
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Anne Trelcat
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Léa Mukeba-Harchies
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Ahmad Najem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium.
| |
Collapse
|
4
|
Zhang H, Dong X, Ding X, Liu G, Yang F, Song Q, Sun H, Chen G, Li S, Li Y, Wang M, Guo T, Zhang Z, Li B, Yang L. Bufalin targeting CAMKK2 inhibits the occurrence and development of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. J Transl Med 2023; 21:900. [PMID: 38082327 PMCID: PMC10714474 DOI: 10.1186/s12967-023-04613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. METHODS IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/β-catenin pathway. SKL2001, an activator of β-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/β-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Street, Weifang, 261041, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6, Tongfu Road, Qingdao, 266034, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Pascual Alonso I, Rivera Méndez L, Almeida García F, Valdés-Tresanco ME, Alonso Bosch R, Perera WH, Arrebola Sánchez Y, Bergado G, Sánchez Ramírez B, Charli JL. Bufadienolides preferentially inhibit aminopeptidase N among mammalian metallo-aminopeptidases; relationship with effects on human melanoma MeWo cells. Int J Biol Macromol 2023; 229:825-837. [PMID: 36592847 DOI: 10.1016/j.ijbiomac.2022.12.280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Bufadienolides are steroids that inhibit Na+/K+-ATPase; recent evidence shows that bufalin inhibits the activity of porcine aminopeptidase N (pAPN). We evaluated the selectivity of some bufadienolides on metallo-aminopeptidases. Among the enzymes of the M1 and M17 families, pAPN and porcine aminopeptidase A (pAPA) were the only targets of some bufadienolides. ѱ-bufarenogin, telocinobufagin, marinobufagin, bufalin, cinobufagin, and bufogenin inhibited the activity of pAPN in a dose-dependent manner in the range of 10-7-10-6 M. The inhibition mechanism was classical reversible noncompetitive for telocinobufagin, bufalin and cinobufagin. Bufogenin had the lowest Ki value and a non-competitive behavior. pAPA activity was inhibited by ѱ-bufarenogin, cinobufagin, and bufogenin, with a classical competitive type of inhibition. The models of enzyme-inhibitor complexes agreed with the non-competitive type of inhibition of pAPN by telocinobufagin, bufalin, cinobufagin, and bufogenin. Since APN is a target in cancer therapy, we tested the effect of bufadienolides on the MeWo APN+ human melanoma cell line; they induced cell death, but we obtained scant evidence that inhibition of APN contributed to their effect. Thus, APN is a selective target of some bufadienolides, and we suggest that inhibition of APN activity by bufadienolides is not a major contributor to their antiproliferative properties in MeWo cells.
Collapse
Affiliation(s)
| | | | | | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Canada
| | - Roberto Alonso Bosch
- Museo de Historia Natural Felipe Poey, Faculty of Biology, University of Havana, Cuba
| | - Wilmer H Perera
- CAMAG Scientific, Inc., 515 Cornelius Harnett Dr, Wilmington, NC 28401d, United States of America
| | | | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
6
|
Gu Y, Du Y, Jiang L, Tang X, Li A, Zhao Y, Lang Y, Liu X, Liu J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J Nanobiotechnology 2022; 20:384. [PMID: 35999612 PMCID: PMC9400227 DOI: 10.1186/s12951-022-01597-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most malignant skin tumor and is difficult to cure with the alternative treatments of chemotherapy, biotherapy, and immunotherapy. Our previous study showed that triptolide (TP) exhibited powerful tumoricidal activity against melanoma. However, the clinical potential of TP is plagued by its poor aqueous solubility, short half-life, and biotoxicity. Therefore, developing an ideal vehicle to efficiently load TP and achieving targeted delivery to melanoma is a prospective approach for making full use of its antitumor efficacy. Results We applied exosome (Exo) derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) and engineered them exogenously with a cyclic peptide, arginine-glycine-aspartate (cRGD), to encapsulate TP to establish a bionic-targeted drug delivery system (cRGD-Exo/TP), achieving synergism and toxicity reduction. The average size of cRGD-Exo/TP was 157.34 ± 6.21 nm, with a high drug loading of 10.76 ± 1.21%. The in vitro antitumor results showed that the designed Exo delivery platform could be effectively taken up by targeted cells and performed significantly in antiproliferation, anti-invasion, and proapoptotic activities in A375 cells via the caspase cascade and mitochondrial pathways and cell cycle alteration. Furthermore, the biodistribution and pharmacokinetics results demonstrated that cRGD-Exo/TP possessed superior tumor targetability and prolonged the half-life of TP. Notably, cRGD-Exo/TP significantly inhibited tumor growth and extended survival time with negligible systemic toxicity in tumor-bearing mice. Conclusion The results indicated that the functionalized Exo platform provides a promising strategy for targeted therapy of malignant melanoma. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01597-1.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pharmacy, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yitian Lang
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, SAR, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Chiu YJ, Yang JS, Tsai FJ, Chiu HY, Juan YN, Lo YH, Chiang JH. Curcumin suppresses cell proliferation and triggers apoptosis in vemurafenib-resistant melanoma cells by downregulating the EGFR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:868-879. [PMID: 34994998 DOI: 10.1002/tox.23450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Melanoma is a malignant tumor with aggressive behavior. Vemurafenib, a BRAF inhibitor, is clinically used in melanoma, but resistance to melanoma cytotoxic therapies is associated with BRAF mutations. Curcumin can effectively inhibit numerous types of cancers. However, there are no reports regarding the correlation between curcumin and vemurafenib-resistant melanoma cells. In this study, vemurafenib-resistant A375.S2 (A375.S2/VR) cells were established, and the functional mechanism of the epidermal growth factor receptor (EGFR), serine-threonine kinase (AKT), and the extracellular signal-regulated kinase (ERK) signaling induced by curcumin was investigated in A375.S2/VR cells in vitro. Our results indicated that A375.S2/VR cells had a higher IC50 concentration of vemurafenib than the parental A375.S2 cells. Moreover, curcumin reduced the viability and confluence of A375.S2/VR cells. Curcumin triggered apoptosis via reactive oxygen species (ROS) production, disruption of mitochondrial membrane potential (ΔΨm), and intrinsic signaling (caspase-9/-3-dependent) pathways in A375.S2/VR cells. Curcumin-induced apoptosis was also mediated by the EGFR signaling pathway. Combination treatment with curcumin and gefitinib (an EGFR inhibitor) synergistically potentiated the inhibitory effect of cell viability in A375.S2/VR cells. The present study provides new insights into the therapy of vemurafenib-resistant melanoma and suggests that curcumin might be an encouraging therapeutic candidate for its drug-resistant treatment.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi, Taiwan
| |
Collapse
|
8
|
Xu Y, Tang L, Chen P, Chen M, Zheng M, Shi F, Wang Y. Tumor-Targeted Delivery of Bufalin-Loaded Modified Albumin-Polymer Hybrid for Enhanced Antitumor Therapy and Attenuated Hemolysis Toxicity and Cardiotoxicity. AAPS PharmSciTech 2021; 22:137. [PMID: 33880681 DOI: 10.1208/s12249-021-02000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
A novel albumin polymer hybrid with a core-shell structure was designed to target delivery of bufalin, which is an antineoplastic monomer with serious cardiotoxicity. The sheath layer was composed of ursodeoxycholic acid (UA)-modified bovine serum albumin (UA-BSA), while the stable core consisted of poly n-butyl cyanoacrylate (PBCA) nanoparticles. The UA-BSA was synthetized, and the substitution degree was characterized. The physical properties of bufalin-loaded UA-modified protein-PBCA nanocomplexes (BF-uPPNCs), such as morphology, particle size, and encapsulation efficiency, were evaluated. FTIR and DSC revealed the bufalin to be in an amorphous state. Furthermore, the in vitro release study indicated a sustained release profile of BF-uPPNCs. The MTT and cellular uptake study demonstrated that BF-uPPNCs significantly improved the inhibitory effect of the bufalin accompanied with an enhanced cell uptake capacity on HepG2 cells. In addition, in vivo research demonstrated that BF-uPPNCs had a better antitumor effect coupled with improved therapeutic effect, and reduced hemolysis, vascular irritation, and cardiotoxicity. This work therefore presented a novel albumin polymer hybrid with favorable stability, efficient tumor-targeted delivery potential, and side effect reduction ability, which can be a potential vehicle for an anticancer drug.
Collapse
|
9
|
Soumoy L, Wells M, Najem A, Krayem M, Ghanem G, Hambye S, Saussez S, Blankert B, Journe F. Toad Venom Antiproliferative Activities on Metastatic Melanoma: Bio-Guided Fractionation and Screening of the Compounds of Two Different Venoms. BIOLOGY 2020; 9:biology9080218. [PMID: 32785105 PMCID: PMC7464305 DOI: 10.3390/biology9080218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is the most common cancer in young adults, with a constantly increasing incidence. Metastatic melanoma is a very aggressive cancer with a 5-year survival rate of about 22-25%. This is, in most cases, due to a lack of therapies which are effective on the long term. Hence, it is crucial to find new therapeutic agents to increase patient survival. Toad venoms are a rich source of potentially pharmaceutically active compounds and studies have highlighted their possible effect on cancer cells. We focused on the venoms of two different toad species: Bufo bufo and Rhinella marina. We screened the venom crude extracts, the fractions from crude extracts and isolated biomolecules by studying their antiproliferative properties on melanoma cells aiming to determine the compound or the combination of compounds with the highest antiproliferative effect. Our results indicated strong antiproliferative capacities of toad venoms on melanoma cells. We found that these effects were mainly due to bufadienolides that are cardiotonic steroids potentially acting on the Na+/K+ ATPase pump which is overexpressed in melanoma. Finally, our results indicated that bufalin alone was the most interesting compound among the isolated bufadienolides because it had the highest antiproliferative activity on melanoma cells.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (L.S.); (S.S.)
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (M.W.); (S.H.); (B.B.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet (ULB), 1000 Brussels, Belgium; (A.N.); (M.K.); (G.G.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet (ULB), 1000 Brussels, Belgium; (A.N.); (M.K.); (G.G.)
| | - Ghanem Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet (ULB), 1000 Brussels, Belgium; (A.N.); (M.K.); (G.G.)
| | - Stéphanie Hambye
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (M.W.); (S.H.); (B.B.)
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (L.S.); (S.S.)
- Department of Oto-Rhino-Laryngology, Université Libre de Bruxelles (ULB), CHU Saint-Pierre, 1000 Brussels, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (M.W.); (S.H.); (B.B.)
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium; (L.S.); (S.S.)
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet (ULB), 1000 Brussels, Belgium; (A.N.); (M.K.); (G.G.)
- Correspondence:
| |
Collapse
|
10
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Simultaneous Determination of Bufalin and Its Nine Metabolites in Rat Plasma for Characterization of Metabolic Profiles and Pharmacokinetic Study by LC⁻MS/MS. Molecules 2019; 24:molecules24091662. [PMID: 31035327 PMCID: PMC6539458 DOI: 10.3390/molecules24091662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023] Open
Abstract
Characterization and determination of metabolites to monitor metabolic pathways play a paramount role in evaluating the efficacy and safety of medicines. However, the separation and quantification of metabolites are rather difficult due to their limited contents in vivo, especially in the case of Chinese medicine, due to its complexity. In this study, an effective and convenient method was developed to simultaneously quantify bufalin and its nine metabolites (semi-quantitation) in rat plasma after an oral administration of 10 mg/kg to rats. The prototype and metabolites that were identified were subsequently quantified using positive electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 387.4→369.6 and 387.4→351.3 for bufalin, m/z 513.7→145.3 for IS, and 387.4→369.6, 419.2→365.2, and 403.2→349.2 for the main metabolites (3-epi-bufalin, dihydroxylated bufalin, and hydroxylated bufalin, respectively). The method was validated over the calibration curve range of 1.00–100 ng/mL with a limit of quantitation (LOQ) of 1 ng/mL for bufalin. No obvious matrix effect was observed, and the intra- and inter-day precisions, as well as accuracy, were all within the acceptable criteria in this method. Then, this method was successfully applied in metabolic profiling and a pharmacokinetic study of bufalin after an oral administration of 10 mg/kg to rats. The method of simultaneous determination of bufalin and its nine metabolites in rat plasma could be useful for pharmacokinetic–pharmacodynamic relationship research of bufalin, providing experimental evidence for explaining the occurrence of some adverse effects of Venenum Bufonis and its related preparations.
Collapse
|
12
|
Cheng CS, Wang J, Chen J, Kuo KT, Tang J, Gao H, Chen L, Chen Z, Meng Z. New therapeutic aspects of steroidal cardiac glycosides: the anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int 2019; 19:92. [PMID: 31011289 PMCID: PMC6458819 DOI: 10.1186/s12935-019-0806-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Aim of the review In the past decade, increasing research attention investigated the novel therapeutic potential of steroidal cardiac glycosides in cancer treatment. Huachansu and its main active constituent Bufalin have been studied in vitro, in vivo and clinical studies. This review aims to summarize the multi-target and multi-pathway pharmacological effects of Bufalin and Huachansu in the last decade, with the aim of providing a more comprehensive view and highlighting the recently discovered molecular mechanisms. Results Huachansu and its major derivative, Bufalin, had been found to possess anti-cancer effects in a variety of cancer cell lines both in vitro and in vivo. The underlying anti-cancer molecular mechanisms mainly involved anti-proliferation, apoptosis induction, anti-metastasis, anti-angiogenesis, epithelial-mesenchymal transition inhibition, anti-inflammation, Na+/K+-ATPase activity targeting, the steroid receptor coactivator family inhibitions, etc. Moreover, the potential side-effects and toxicities of the toad extract, Huachansu, and Bufalin, including hematological, gastrointestinal, mucocutaneous and cardiovascular adverse reactions, were reported in animal studies and clinic trails. Conclusions Further research is needed to elucidate the potential drug-drug interactions and multi-target interaction of Bufalin and Huachansu. Large-scale clinical trials are warranted to translate the knowledge of the anticancer actions of Bufalin and Huachansu into clinical applications as effective and safe treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jiaqiang Wang
- 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433 China.,5Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jie Chen
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China.,6Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Kuei Ting Kuo
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jian Tang
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Huifeng Gao
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lianyu Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhiqiang Meng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
13
|
Shih YL, Chou JS, Chen YL, Hsueh SC, Chung HY, Lee MH, Chen CP, Lee MZ, Hou HT, Lu HF, Chen KW, Chung JG. Bufalin Enhances Immune Responses in Leukemic Mice Through Enhancing Phagocytosis of Macrophage In Vivo. In Vivo 2018; 32:1129-1136. [PMID: 30150435 DOI: 10.21873/invivo.11355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Bufalin, bufadienolide present in Chan Su, has been shown to induce cancer cell apoptosis in many human cancer cells, including human leukemia cells, but its effects on immune responses are unknown. MATERIALS AND METHODS This study investigated whether bufalin affected immune responses of mice with WEHI-3 cell-generated leukemia in vivo. BALB/c mice were intraperitoneally injected with WEHI-3 cells to develop leukemia and then were treated with oral treatment with bufalin at different doses (0, 0.1, 0.2 and 0.4 mg/kg) for 2 weeks. At the end of treatment, all mice were weighted and blood was collected; liver and spleen tissues were collected for cell marker, phagocytosis, natural killer (NK) cell activity and T- and B-cell proliferation measurements by using flow cytometric assays. RESULTS When compared with the leukemia control group, bufalin increased the body weight, but reduced liver and spleen weights, and reduced CD3, CD16 and Mac-3 cell markers at 0.4 mg/kg treatment and increased CD11b marker at 0.1 and 0.2 mg/kg treatment. Furthermore, bufalin at 0.4 mg/kg increased phagocytosis by macrophages isolated from peripheral blood mononuclear cells and at 0.1 mg/kg by those from the peritoneal cavity. Bufalin (0.2 and 0.4 mg/kg) increased NK cell cytotoxic activity at effector:target ratio of 50:1. Bufalin increased B-cell proliferation at 0.1 and 0.2 mg/kg treatment but only increased T-cell proliferation at 0.1 mg/kg. Bufalin increased glutamate oxaloacetate transaminase level at all dose treatments, increased glutamic pyruvic transaminase level only at 0.1 mg/kg treatment, but reduced the level of lactate dehydrogenase at all dose levels in mice with WEHI-3 cell-induced leukemia in vivo. CONCLUSION Bufalin increased immune responses by enhancing phagocytosis in mice with leukemia mice.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Jiann-Shang Chou
- Department of Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan, R.O.C
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.,Family Medicine and Community Medicine, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen-Teh Junior College of Medicine, Nursing and Management, Houlong, Taiwan, R.O.C
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Chao-Ping Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Ming-Zhe Lee
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsin-Tu Hou
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C. .,Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
14
|
The synergistic antitumor effect of cinobufagin and cisplatin in human osteosarcoma cell line in vitro and in vivo. Oncotarget 2017; 8:85150-85168. [PMID: 29156710 PMCID: PMC5689600 DOI: 10.18632/oncotarget.19554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Cisplatin (CDDP) has been shown to be a promising anticancer drug that is effective against many types of cancer, which include osteosarcoma (OS). However, its therapeutic application is restricted by its toxicity in normal tissues and by side effects caused in patients. Reduction of the toxicity of CDDP is necessary to improve cancer treatment. In the present study, we attempted to clarify how cinobufagin, a traditional Chinese medicine, enhances CDDP-induced cytotoxicity in OS cells. OS 143B cells were treated with cinobufagin and CDDP alone or in combination. After low dose combined treatments with cinobufagin and CDDP, the effects of these therapeutics on cell proliferation, apoptosis, cell cycle, migration, invasion, and involvement in Notch pathway, as well as tumor growth and metastatic capability were determined. It was found that the combination of low doses of cinobufagin and CDDP markedly inhibited cell activity, motility, and induced apoptosis and cell cycle arrest in S phase, as well as suppressing tumor growth, metastasis and prolonging longer survival of nude mice in OS xenograft models compared with the actions of either drug alone or vehicle. The results also demonstrated that cinobufagin plus CDDP significantly suppressed the Notch pathway. The anticancer mechanism of these two drugs may involve intervention in the Notch signaling, which may contribute to inhibit tumor growth. All of these results suggest that application of lower concentration cinobufagin plus CDDP could produce a synergistic antitumor effect and this finding warrants further investigation for its potential clinical applications in human OS patients.
Collapse
|
15
|
Lee CH, Shih YL, Lee MH, Au MK, Chen YL, Lu HF, Chung JG. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways. Molecules 2017; 22:molecules22030437. [PMID: 28287444 PMCID: PMC6155407 DOI: 10.3390/molecules22030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Country 356, Taiwan.
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan.
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| |
Collapse
|
16
|
Meng Q, Zhao Y, An L, Li X, Liu P. Inhibitory effect of bufalin on retinoblastoma cells (HXO-RB44) via the independent mitochondrial and death receptor pathway. Am J Transl Res 2016; 8:4968-4974. [PMID: 27904697 PMCID: PMC5126339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Cinobufacini (Huachansu) is a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), and has long been used in traditional Chinese medicine. In the present study, the anti-retinoblastoma constituent bufalin obtained from Cinobufacini was investigated. Treatment of human retinoblastoma (HXO-RB44) cells with bufalin induced apoptosis which was accompanied by a decrease in mitochondrial membrane potential, activation of caspase-9, caspase-8 and caspase-3, as well as changes in the expression of cytochrome C. Bufalin induced the cleavage of caspase-3 and apoptosis, and it was inhibited by both Z-LETD-FMK and Z-IETD-FMK treatment. Taken together, these results demonstrate that bufalin-induced apoptosis in human retinoblastoma (HXO-RB44) cells involved both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - LiXin An
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xia Li
- Department of Bioinformatic, The Harbin Medical UniversityHarbin 150086, Heilongjiang Province, China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
17
|
Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway. Sci Rep 2016; 6:23693. [PMID: 27021411 PMCID: PMC4810373 DOI: 10.1038/srep23693] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Paeonol and danshensu is the representative active ingredient of traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizae, respectively. Paeonol and danshensu combination (PDSS) has putative cardioprotective effects in treating ischemic heart disease (IHD). However, the evidence for the protective effect is scarce and the pharmacological mechanisms of the combination remain unclear. The present study was designed to investigate the protective effect of PDSS on isoproterenol (ISO)-induced myocardial infarction in rats and to elucidate the potential mechanism. Assays of creatine kinase-MB, cardiac troponin I and T and histopathological analysis revealed PDSS significantly prevented myocardial injury induced by ISO. The ISO-induced profound elevation of oxidative stress was also suppressed by PDSS. TUNEL and caspase-3 activity assay showed that PDSS significantly inhibited apoptosis in myocardia. In exploring the underlying mechanisms of PDSS, we found PDSS enhanced the nuclear translocation of Nrf2 in myocardial injured rats. Furthermore, PDSS increased phosphorylated PI3K and Akt, which may in turn activate antioxidative and antiapoptotic signaling events in rat. These present findings demonstrated that PDSS exerts significant cardioprotective effects against ISO-induced myocardial infarction in rats. The protective effect is, at least partly, via activation of Nrf2/HO-1 signaling and involvement of the PI3K/Akt cell survival signaling pathway.
Collapse
|
18
|
Liu KC, Shih TY, Kuo CL, Ma YS, Yang JL, Wu PP, Huang YP, Lai KC, Chung JG. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1289-1310. [DOI: 10.1142/s0192415x16500725] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.
Collapse
Affiliation(s)
- Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ting-Ying Shih
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jiun-Long Yang
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
19
|
Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2735-44. [PMID: 26056434 PMCID: PMC4445699 DOI: 10.2147/dddt.s80902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Keming Zhang
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Lee CC, Hsieh HJ, Hsieh CH, Hwang DF. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells. Exp Mol Pathol 2015; 99:7-15. [PMID: 25952364 DOI: 10.1016/j.yexmp.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/14/2015] [Accepted: 05/01/2015] [Indexed: 01/22/2023]
Abstract
The crown-of-thorns starfish Acanthaster planci is a venomous starfish whose venom provokes strong cytotoxicity. In the present study, the purified cytotoxic toxin of A. planci venom (CAV) was identified as plancitoxin I protein by mass spectrum analyses. This study aims to investigate the molecular mechanism underlying the cytotoxicity function of plancitoxin I by focusing on the oxidative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress pathway in human melanoma A375.S2 cells. The results indicated that after being treated with CAV toxin, A375.S2 cells significantly decreased viability in a dose-dependent manner. The CAV was found to reduce the cellular antioxidant enzymes such as SOD and CAT, and there was a significant decrease in total thiol level and mtDNA integrity, and it enhanced the lipid peroxidation. In addition, CAV increased cytosolic Ca(2+) concentration, and enhanced the expression of the ER molecular chaperones GRP78 and CHOP in a dose-dependent manner. CAV significantly elevated the activity of caspase-3, -8 and -9, and reduced the ratio of Bcl-2/Bax. The cells exhibited apoptosis were determined by using propidium iodide (PI) staining of DNA fragmentation (sub-G1 peak). In summary, the results demonstrated that plancitoxin I inhibits the proliferation of A375.S2 cells through induction of oxidative stress, mitochondrial dysfunction and ER stress associated apoptosis.
Collapse
Affiliation(s)
- Chi-Chiu Lee
- Department of Food Science and Center of Excellence for the Ocean, National Taiwan Ocean University. 2 Pei-Ning Road, Keelung 202, Taiwan, ROC
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan, ROC
| | - Cheng-Hong Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, 500, Lioufeng Road, Wufeng, Taichung 413, Taiwan, ROC
| | - Deng-Fwu Hwang
- Department of Food Science and Center of Excellence for the Ocean, National Taiwan Ocean University. 2 Pei-Ning Road, Keelung 202, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, 500, Lioufeng Road, Wufeng, Taichung 413, Taiwan, ROC.
| |
Collapse
|
21
|
LI AODI, QU XIUJUAN, LI ZHI, QU JINGLEI, SONG NA, MA YANJU, LIU YUNPENG. Secreted protein acidic and rich in cysteine antagonizes bufalin-induced apoptosis in gastric cancer cells. Mol Med Rep 2015; 12:2926-32. [DOI: 10.3892/mmr.2015.3676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
|
22
|
Zhao H, Zhao D, Tan G, Liu Y, Zhuang L, Liu T. Bufalin promotes apoptosis of gastric cancer by down-regulation of miR-298 targeting bax. Int J Clin Exp Med 2015; 8:3420-3428. [PMID: 26064232 PMCID: PMC4443066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Bufalin is used to treat many patients with solid malignant tumors clinically. Bufalin could induce gastric cancer cell apoptosis via BAX. microRNA (miRNA) plays important roles in gene regulation. However, miRNA involving in bufalin inducing apoptosis of gastric cancer cells remains to futher research. To study the regulatory role of miRNA in bufalin induced cancer cell apoptosis. Firstly, we verifed that bufalin could induce gastric cancer cell apoptosis by inducing BAX expression. miR-298 was predicted as a regulator of BAX and further study verified Bax was a target gene of miR-298 by luciferase reporter assay. miR-298 could down-regulate BAX on mRNA and protein level in gastric cancer cells. miR-298 promoted cell proliferation and inhibited apoptosis of gastric cancer cells. It was also found that bufalin inhibited cell proliferation and promoted cell apoptosis by down-regualtion of miR-298. In summary, bufalin-associated miR-298 may indirectly be involved in cell proliferation and apoptosis by targeting BAX, pointing to use as a potential molecular target in gastric cancer therapy.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
- Department of Gastroenterology, The Fourth Hospital of HarbinHarbin, China
| | - Dali Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Gang Tan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yong Liu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Liwei Zhuang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Tiefu Liu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
23
|
Hsiao YP, Lai WW, Wu SB, Tsai CH, Tang SC, Chung JG, Yang JH. Triggering apoptotic death of human epidermal keratinocytes by malic Acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Toxins (Basel) 2015; 7:81-96. [PMID: 25584429 PMCID: PMC4303815 DOI: 10.3390/toxins7010081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/26/2014] [Indexed: 12/21/2022] Open
Abstract
Malic acid (MA) has been commonly used in cosmetic products, but the safety reports in skin are sparse. To investigate the biological effects of MA in human skin keratinocytes, we investigated the potential cytotoxicity and apoptotic effects of MA in human keratinocyte cell lines (HaCaT). The data showed that MA induced apoptosis based on the observations of DAPI staining, DNA fragmentation, and sub-G1 phase in HaCaT cells and normal human epidermal keratinocytes (NHEKs). Flow cytometric assays also showed that MA increased the production of mitochondrial superoxide (mito-SOX) but decreased the mitochondrial membrane potential. Analysis of bioenergetics function with the XF 24 analyzer Seahorse extracellular flux analyzer demonstrated that oxygen consumption rate (OCR) was significantly decreased whereas extracellular acidification rate (ECAR) was increased in MA-treated keratinocytes. The occurrence of apoptosis was proved by the increased expressions of FasL, Fas, Bax, Bid, caspases-3, -8, -9, cytochrome c, and the declined expressions of Bcl-2, PARP. MA also induced endoplasmic reticulum stress associated protein expression such as GRP78, GADD153, and ATF6α. We demonstrated that MA had anti-proliferative effect in HaCaT cell through the inhibition of cell cycle progression at G0/G1, and the induction of programmed cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Wan-Wen Lai
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Shi-Bei Wu
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Chung-Hung Tsai
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Sheau-Chung Tang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, 907 Hualien, Taiwan.
| | - Jing-Gung Chung
- School of Biological Science and Biotechnology, China Medical University, 404 Taichung, Taiwan.
| | - Jen-Hung Yang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, 907 Hualien, Taiwan.
| |
Collapse
|
24
|
Li Y, Yuan J, Yang Q, Cao W, Zhou X, Xie Y, Tu H, Zhang Y, Wang S. Immunoliposome co-delivery of bufalin and anti-CD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma. Int J Nanomedicine 2014; 9:5683-700. [PMID: 25506218 PMCID: PMC4260685 DOI: 10.2147/ijn.s73651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Liposomes constitute one of the most popular nanocarriers for improving the delivery and efficacy of agents in cancer patients. The purpose of this study was to design and evaluate immunoliposome co-delivery of bufalin and anti-CD40 to induce synergetic therapeutic efficacy while eliminating systemic side effects. Bufalin liposomes (BFL) conjugated with anti-CD40 antibody (anti-CD40-BFL) showed enhanced cytotoxicity compared with bufalin alone. In a mouse B16 melanoma model, intravenous injection of anti-CD40-BFL achieved smaller tumor volume than did treatment with BFL (average: 117 mm3 versus 270 mm3, respectively); the enhanced therapeutic efficacy through a caspase-dependent pathway induced apoptosis, which was confirmed using terminal deoxynucleotidyl transferase-mediated dUTP-Fluorescein nick end labeling and Western blot assay. Meanwhile, anti-CD40-BFL elicited unapparent body-weight changes and a significant reduction in serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, interferon-γ, and hepatic enzyme alanine transaminase, suggesting minimized systemic side effects. This may be attributed to the mechanism by which liposomes are retained within the tumor site for an extended period of time, which is supported by the following biodistribution and flow cytometric analyses. Taken together, the results demonstrated a highly promising strategy for liposomal vehicle transport of anti-CD40 plus bufalin that can be used to enhance antitumor effects via synergetic systemic immunity while blocking systemic toxicity.
Collapse
Affiliation(s)
- Ying Li
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiani Yuan
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Qian Yang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Cao
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuanxuan Zhou
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanhua Xie
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Honghai Tu
- Institute for Drug and Instrument Control, Xinjiang Military Area Command, Urumqi, Xinjiang, People's Republic of China
| | - Ya Zhang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Siwang Wang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
25
|
Liao CL, Hsu SC, Yu CC, Yang JS, Tang NY, Wood WG, Lin JG, Chung JG. The crude extract of Corni Fructus induces apoptotic cell death through reactive oxygen species-modulated pathways in U-2 OS human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1020-1031. [PMID: 23239598 DOI: 10.1002/tox.21832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U-2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell-cycle distribution, apoptotic cells in sub-G1 phase, reactive oxygen species (ROS), Ca(2+) levels, and mitochondrial membrane potential (ΔΨm ). Comet assay and 4'-6-diamidino-2-phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis-associated protein levels in U-2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G₀/G₁ arrest, and apoptosis in U-2 OS cells. CECF-stimulated activities of caspase-8, caspase-9, and caspase-3, ROS, and Ca(2+) production, decreased ΔΨm levels of in U-2 OS cells. CECF increased protein levels of caspase-3, caspase-9, Bax, cytochrome c, GRP78, AIF, ATF-6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell-cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U-2 OS cells via ROS-modulated caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee CC, Hsieh HJ, Hsieh CH, Hwang DF. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2). Toxicon 2014; 91:126-34. [PMID: 25159188 DOI: 10.1016/j.toxicon.2014.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023]
Abstract
The crown-of-thorns starfish (Acanthaster planci) is a venomous starfish. In this study, the extraction of A. planci spine venom (ASV) was performed by phosphate saline buffer, followed by assaying the cytotoxicity on human normal and tumor cells. It was found that human melanoma cells (A375.S2) were the most sensitive to the ASV solution. The cells, after incubation with ASV, significantly appeared to decrease cell viability and increase lactate dehydrogenase (LDH) release with a dose-dependent relationship. The extract of spine promoted loss of mitochondrial membrane potential (ΔΨm) and induced inter-nucleosomal DNA fragmentation in human melanoma cells. The cells exhibited apoptosis by using propidium iodide (PI) staining of DNA fragmentation; it was then determined by flow cytometry (sub-G1 peak). The molecular cytotoxicity of ASV was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V and PI assay. The A. planci spine venom showed significant antiproliferation. The human melanoma cells revealed apoptosis at low dose (1.25 μg/ml), and necrosis occurred at high dose (5 μg/ml).
Collapse
Affiliation(s)
- Chi-Chiu Lee
- Department of Food Science and Center of Excellence for the Ocean, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202, Taiwan, ROC
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan, ROC
| | - Cheng-Hong Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, 500, Lioufeng Road, Wufeng, Taichung 413, Taiwan, ROC
| | - Deng-Fwu Hwang
- Department of Food Science and Center of Excellence for the Ocean, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, 500, Lioufeng Road, Wufeng, Taichung 413, Taiwan, ROC.
| |
Collapse
|
27
|
Tian X, Yin H, Zhang S, Luo Y, Xu K, Ma P, Sui C, Meng F, Liu Y, Jiang Y, Fang J. Bufalin loaded biotinylated chitosan nanoparticles: An efficient drug delivery system for targeted chemotherapy against breast carcinoma. Eur J Pharm Biopharm 2014; 87:445-53. [DOI: 10.1016/j.ejpb.2014.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/29/2022]
|
28
|
Wang D, Bi Z. Bufalin inhibited the growth of human osteosarcoma MG-63 cells via down-regulation of Bcl-2/Bax and triggering of the mitochondrial pathway. Tumour Biol 2014; 35:4885-90. [PMID: 24570183 DOI: 10.1007/s13277-014-1640-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/08/2014] [Indexed: 01/12/2023] Open
Abstract
Cinobufacini (Huachansu), a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), has potent anti-tumor activity in vitro and in vivo. However, the molecular mechanism of cell apoptosis induced by Bufalin remains elusive. Here, we investigated the apoptosis in Bufalin-treated human osteosarcoma MG-63 cells. The results showed that Bufalin could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential (MMP) and an up-regulation of reactive oxygen species (ROS) in Bufalin-treated cells. By western blot analysis, we found that the up-regulation of Apaf-1, cleaved PARP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2, varies with different concentration of Bufalin. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that Bufalin could be used as an effective anti-tumor agent in therapy of osteosarcoma targets the mitochondrial-dependent signaling pathway.
Collapse
Affiliation(s)
- Dewei Wang
- Department of Orthopaedics, First Affiliated Hospital of Harbin Medical University, No.23 Youzheng street, Harbin, Heilongjiang province, 150001, China
| | | |
Collapse
|
29
|
Li M, Yu X, Guo H, Sun L, Wang A, Liu Q, Wang X, Li J. Bufalin exerts antitumor effects by inducing cell cycle arrest and triggering apoptosis in pancreatic cancer cells. Tumour Biol 2013. [PMID: 24218335 DOI: 10.1007/s13227-013-1326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As one of the most aggressive human malignancies, pancreatic cancer is a leading cause of cancer-related deaths worldwide and only about 4% of patients will live 5 years after diagnosis. Eighty to approximately eighty-five percent of patients are diagnosed with an unresectable or metastatic disease, which is correlated with poor prognosis and low survival rate. Therefore, it is tremendously significant to exploit novel chemicals to prevent and treat pancreatic cancer. Previous research and clinical studies have demonstrated that many natural products derived from traditional Chinese medicine (TCM) such as camptothecin derivatives and vinca alkaloids could be effective antitumor compounds, hinting that TCM is a promising source for developing new antitumor drugs. In this report, we investigated the effects of bufalin, a primary active ingredient of the traditional Chinese medicine Chan-Su, on pancreatic cancer cell lines PANC-1 and CFPAC-1 and studied the underlying molecular mechanism. We found that exposure to bufalin could suppress the proliferation of pancreatic cancer cells time and dose dependently. We used flow cytometry to study the effects of bufalin on apoptosis and cell cycle distribution in PANC-1 and CFPAC-1 cells. The results indicated that bufalin could significantly induce both apoptosis and G2/M cell cycle arrest in pancreatic cancer cells. With western blotting, we found that the expression level of an antiapoptotic protein heat shock protein 27 (Hsp27) and its partner molecule p-Akt was decreased upon the treatment with bufalin. Besides, bufalin activated pro-caspase-3 and pro-caspase-9 and modulated the expression level of Bcl-2 and Bax. These data suggested that bufalin may trigger apoptosis by targeting Hsp27, which could inhibit apoptosis by interfering with key apoptotic proteins. The influence on the level of cylinB1, CDK1, and p21 was also observed after bufalin treatment, and the relationship between Hsp27 and the cell cycle-related proteins mentioned above deserves much more research. In addition, our data showed that bufalin could enhance the growth inhibition effect of gemcitabine in above pancreatic cancer cells. Taken together, bufalin might be worthy of further study for its potential as a therapeutic agent for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Meiying Li
- Department of Medical Oncology, Cancer Center, Qilu Hospital, Shandong University, Jinan, 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bufalin exerts antitumor effects by inducing cell cycle arrest and triggering apoptosis in pancreatic cancer cells. Tumour Biol 2013; 35:2461-71. [PMID: 24218335 DOI: 10.1007/s13277-013-1326-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022] Open
Abstract
As one of the most aggressive human malignancies, pancreatic cancer is a leading cause of cancer-related deaths worldwide and only about 4% of patients will live 5 years after diagnosis. Eighty to approximately eighty-five percent of patients are diagnosed with an unresectable or metastatic disease, which is correlated with poor prognosis and low survival rate. Therefore, it is tremendously significant to exploit novel chemicals to prevent and treat pancreatic cancer. Previous research and clinical studies have demonstrated that many natural products derived from traditional Chinese medicine (TCM) such as camptothecin derivatives and vinca alkaloids could be effective antitumor compounds, hinting that TCM is a promising source for developing new antitumor drugs. In this report, we investigated the effects of bufalin, a primary active ingredient of the traditional Chinese medicine Chan-Su, on pancreatic cancer cell lines PANC-1 and CFPAC-1 and studied the underlying molecular mechanism. We found that exposure to bufalin could suppress the proliferation of pancreatic cancer cells time and dose dependently. We used flow cytometry to study the effects of bufalin on apoptosis and cell cycle distribution in PANC-1 and CFPAC-1 cells. The results indicated that bufalin could significantly induce both apoptosis and G2/M cell cycle arrest in pancreatic cancer cells. With western blotting, we found that the expression level of an antiapoptotic protein heat shock protein 27 (Hsp27) and its partner molecule p-Akt was decreased upon the treatment with bufalin. Besides, bufalin activated pro-caspase-3 and pro-caspase-9 and modulated the expression level of Bcl-2 and Bax. These data suggested that bufalin may trigger apoptosis by targeting Hsp27, which could inhibit apoptosis by interfering with key apoptotic proteins. The influence on the level of cylinB1, CDK1, and p21 was also observed after bufalin treatment, and the relationship between Hsp27 and the cell cycle-related proteins mentioned above deserves much more research. In addition, our data showed that bufalin could enhance the growth inhibition effect of gemcitabine in above pancreatic cancer cells. Taken together, bufalin might be worthy of further study for its potential as a therapeutic agent for pancreatic cancer treatment.
Collapse
|
31
|
Bufalin Reverses HGF-Induced Resistance to EGFR-TKIs in EGFR Mutant Lung Cancer Cells via Blockage of Met/PI3k/Akt Pathway and Induction of Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:243859. [PMID: 23533466 PMCID: PMC3603503 DOI: 10.1155/2013/243859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022]
Abstract
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, have shown promising therapeutic efficacy in nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor- (EGFR-) activating mutation. However, the inevitable recurrence resulting from acquired resistance has limited the clinical improvement in therapy outcomes. Many studies demonstrate that hepatocyte growth factor- (HGF-) Met axis plays an important role in tumor progression and drug sensitivity. HGF may induce resistance to EGFR-TKIs in EGFR mutant lung cancer cells by Met/PI3K/Akt signaling. The purpose of this study was to determine whether bufalin, a major bioactive component of Venenum Bufonis, could reverse HGF-induced resistance to reversible and irreversible EGFR-TKIs in mutant lung cancer cells PC-9, HCC827, and H1975. Our studies showed that bufalin could reverse resistance to reversible and irreversible EGFR-TKIs induced by exogenous HGF in EGFR mutant lung cancer cells by inhibiting the Met/PI3K/Akt pathway and inducing death signaling. These results suggested that bufalin might have a potential to overcome HGF-induced resistance to molecular-targeted drugs for lung cancer.
Collapse
|
32
|
Miao Q, Bi LL, Li X, Miao S, Zhang J, Zhang S, Yang Q, Xie YH, Zhang J, Wang SW. Anticancer effects of bufalin on human hepatocellular carcinoma HepG2 cells: roles of apoptosis and autophagy. Int J Mol Sci 2013; 14:1370-82. [PMID: 23344047 PMCID: PMC3565325 DOI: 10.3390/ijms14011370] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 01/15/2023] Open
Abstract
The traditional Chinese medicine bufalin, extracted from toad’s skin, has been demonstrated to exert anticancer activities in various kinds of human cancers. The mechanisms of action lie in its capacity to induce apoptosis, or termed type I programmed cell death (PCD). However, type II PCD, or autophagy, participates in cancer proliferation, progression, and relapse, as well. Recent studies on autophagy seem to be controversial because of the dual roles of autophagy in cancer survival and death. In good agreement with previous studies, we found that 100 nM bufalin induced extensive HepG2 cell apoptosis. However, we also noticed bufalin triggered autophagy and enhanced Beclin-1 expression, LC3-I to LC3-II conversion, as well as decreased p62 expression and mTOR signaling activation in HepG2 cells. Blockage of autophagy by selective inhibitor 3-MA decreased apoptotic ratio in bufalin-treated HepG2 cells, suggesting a proapoptotic role of bufalin-induced autophagy. Furthermore, we investigated the underlying mechanisms of bufalin-induced autophagy. Bufalin treatment dose-dependently promoted AMPK phosphorylation while AMPK inhibition by compound C significantly attenuated bufalin-induced autophagy. Taken together, we report for the first time that bufalin induces HepG2 cells PCD, especially for autophagy, and the mechanism of action is, at least in part, AMPK-mTOR dependent.
Collapse
Affiliation(s)
- Qing Miao
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
| | - Lin-Lin Bi
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
| | - Xin Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100850, China; E-Mail:
| | - Shan Miao
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
| | - Jin Zhang
- Department of Hand Surgery, 401 Military Hospital, Qingdao 266071, China; E-Mail:
| | - Song Zhang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China; E-Mail:
| | - Qian Yang
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
| | - Yan-Hua Xie
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Authors to whom correspondence should be addressed; E-Mails: (S.-W.W.); (J.Z.); Tel.: +86-29-8477-4748 (S.-W.W.); +86-29-8477-1132 (J.Z.); Fax: +86-29-8322-4790 (S.-W.W.); +86-29-8477-1132 (J.Z.)
| | - Si-Wang Wang
- Institute of Materia Medica, Fourth Military Medical University, Xi’an 710032, China; E-Mails: (Q.M.); (L.-L.B.); (S.M.); (Q.Y.); (Y.-H.X.)
- Authors to whom correspondence should be addressed; E-Mails: (S.-W.W.); (J.Z.); Tel.: +86-29-8477-4748 (S.-W.W.); +86-29-8477-1132 (J.Z.); Fax: +86-29-8322-4790 (S.-W.W.); +86-29-8477-1132 (J.Z.)
| |
Collapse
|
33
|
Hung FM, Chen YL, Huang AC, Hsiao YP, Yang JS, Chung MT, Chueh FS, Lu HF, Chung JG. Triptolide induces S phase arrest via the inhibition of cyclin E and CDC25A and triggers apoptosis via caspase- and mitochondrial-dependent signaling pathways in A375.S2 human melanoma cells. Oncol Rep 2013; 29:1053-60. [PMID: 23314229 DOI: 10.3892/or.2013.2230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022] Open
Abstract
Triptolide (TPL), a diterpene triepoxide compound, extracted from Tripterygium wilfordii Hook F. [a traditional Chinese medicinal herb (TCM)], has demonstrated great chemotherapeutic potential for the treatment of tumors. However, the anticancer mechanisms of action of TPL in human skin cancer remain to be further investigated. In this study, we used A375.S2 human melanoma skin cancer cells as a model to investigate the effect of TPL on cell death. A375.S2 cells were treated with various concentrations of TPL for different periods of time and investigated the effects on cell cycle distribution and apoptosis were investigated. The data showed that TPL induced cell morphological changes, decreased the percentage of viable cells, and induced S phase arrest and apoptosis in A375.S2 cells in a concentration- and time-dependent manner. Furthermore, we used flow cytometry analysis and the data showed that TPL promoted reactive oxygen species, NO and Ca2+ production, decreased the mitochondrial membrane potential (ΔΨm) and increased the activity of caspase-3, -8 and -9 in the A375.S2 cells. Western blot analysis showed that TPL promoted the expression of p21 and p27 but inhibited that of cyclin A and CDC25A, leading to S phase arrest. Furthermore, the data also showed that TPL promoted the expression of Fas and FasL and increased the activity of caspase-3, -8 and -9, cytochrome c, Bax, apoptosis-inducing factor (AIF) and endonuclease G (Endo G); however, the expression of Bax was decreased, leading to apoptosis. Based on these observations, TPL induces apoptosis in A375.S2 cells through Fas-, caspase- and mitochondrial-mediated pathways.
Collapse
Affiliation(s)
- Fang-Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Ηospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chueh FS, Chen YL, Hsu SC, Yang JS, Hsueh SC, Ji BC, Lu HF, Chung JG. Triptolide induced DNA damage in A375.S2 human malignant melanoma cells is mediated via reduction of DNA repair genes. Oncol Rep 2012; 29:613-8. [PMID: 23233170 DOI: 10.3892/or.2012.2170] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/14/2012] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated that triptolide induces cell cycle arrest and apoptosis in human cancer cell lines. However, triptolide-induced DNA damage and inhibition of DNA repair gene expression in human skin cancer cells has not previously been reported. We sought the effects of triptolide on DNA damage and associated gene expression in A375.S2 human malignant melanoma cells in vitro. Comet assay, DAPI staining and DNA gel electrophoresis were used for examining DNA damage and results indicated that triptolide induced a longer DNA migration smear based on single cell electrophoresis and DNA condensation and damage occurred based on the examination of DAPI straining and DNA gel electrophoresis. The real-time PCR technique was used to examine DNA damage and repair gene expression (mRNA) and results indicated that triptolide led to a decrease in the ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA-1), p53, DNA-dependent serine/threonine protein kinase (DNA-PK) and O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression. Thus, these observations indicated that triptolide induced DNA damage and inhibited DNA damage and repair-associated gene expression (mRNA) that may be factors for triptolide-mediated inhibition of cell growth in vitro in A375.S2 cells.
Collapse
Affiliation(s)
- Fu-Shin Chueh
- Departments of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|