1
|
Hinrichs R, Graumann PL. Visual Evidence for the Recruitment of Four Enzymes with RNase Activity to the Bacillus subtilis Replication Forks. Cells 2024; 13:1381. [PMID: 39195267 DOI: 10.3390/cells13161381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Removal of RNA/DNA hybrids for the maturation of Okazaki fragments on the lagging strand, or due to misincorporation of ribonucleotides by DNA polymerases, is essential for all types of cells. In prokaryotic cells such as Escherichia coli, DNA polymerase 1 and RNase HI are supposed to remove RNA from Okazaki fragments, but many bacteria lack HI-type RNases, such as Bacillus subtilis. Previous work has demonstrated in vitro that four proteins are able to remove RNA from RNA/DNA hybrids, but their actual contribution to DNA replication is unclear. We have studied the dynamics of DNA polymerase A (similar to Pol 1), 5'->3' exonuclease ExoR, and the two endoribonucleases RNase HII and HIII in B. subtilis using single-molecule tracking. We found that all four enzymes show a localization pattern similar to that of replicative DNA helicase. By scoring the distance of tracks to replication forks, we found that all four enzymes are enriched at DNA replication centers. After inducing UV damage, RNase HIII was even more strongly recruited to the replication forks, and PolA showed a more static behavior, indicative of longer binding events, whereas RNase HII and ExoR showed no response. Inhibition of replication by 6(p hydroxyphenylazo)-uracil (HPUra) demonstrated that both RNase HII and RNase HIII are directly involved in the replication. We found that the absence of ExoR increases the likelihood of RNase HIII at the forks, indicating that substrate availability rather than direct protein interactions may be a major driver for the recruitment of RNases to the lagging strands. Thus, B. subtilis replication forks appear to be an intermediate between E. coli type and eukaryotic replication forks and employ a multitude of RNases, rather than any dedicated enzyme for RNA/DNA hybrid removal.
Collapse
Affiliation(s)
- Rebecca Hinrichs
- Centre for Synthetic Microbiology (SYNMIKRO), Philipps Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Philipps Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
2
|
Laalami S, Cavaiuolo M, Oberto J, Putzer H. Membrane Localization of RNase Y Is Important for Global Gene Expression in Bacillus subtilis. Int J Mol Sci 2024; 25:8537. [PMID: 39126106 PMCID: PMC11313650 DOI: 10.3390/ijms25158537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
RNase Y is a key endoribonuclease that regulates global mRNA turnover and processing in Bacillus subtilis and likely many other bacteria. This enzyme is anchored to the cell membrane, creating a pseudo-compartmentalization that aligns with its role in initiating the decay of mRNAs primarily translated at the cell periphery. However, the reasons behind and the consequences of RNase Y's membrane attachment remain largely unknown. In our study, we examined a strain expressing wild-type levels of a cytoplasmic form of RNase Y from its chromosomal locus. This strain exhibits a slow-growth phenotype, similar to that of an RNase Y null mutant. Genome-wide data reveal a significant impact on the expression of hundreds of genes. While certain RNA substrates clearly depend on RNase Y's membrane attachment, others do not. We observed no correlation between mRNA stabilization in the mutant strains and the cellular location or function of the encoded proteins. Interestingly, the Y-complex, a specificity factor for RNase Y, also appears also recognize the cytoplasmic form of the enzyme, restoring wild-type levels of the corresponding transcripts. We propose that membrane attachment of RNase Y is crucial for its functional interaction with many coding and non-coding RNAs, limiting the cleavage of specific substrates, and potentially avoiding unfavorable competition with other ribonucleases like RNase J, which shares a similar evolutionarily conserved cleavage specificity.
Collapse
Affiliation(s)
- Soumaya Laalami
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
| | - Marina Cavaiuolo
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
- Laboratory for Food Safety, SBCL Unit, University Paris Est, ANSES, 94701 Maisons-Alfort, France
| | - Jacques Oberto
- Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, 75005 Paris, France; (S.L.)
| |
Collapse
|
3
|
Drummond IY, DePaolo A, Krieger M, Driscoll H, Eckstrom K, Spatafora GA. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon. J Bacteriol 2023; 205:e0017223. [PMID: 37695854 PMCID: PMC10521355 DOI: 10.1128/jb.00172-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Dental caries is among the most prevalent chronic diseases worldwide. Streptococcus mutans, the chief causative agent of caries, uses a 25-kDa manganese-dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression, and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we focused our attention on 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of RNA sequencing revealed 19 sRNAs in S. mutans, which were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 10 sRNAs that were differentially expressed in UA159 cells grown in the presence of low vs high manganese. We describe SmsR1532 and SmsR1785 as SloR- and manganese-responsive sRNAs that are processed from large transcripts and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25-kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterized sRNAs that are both SloR and manganese responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen and that can enable the development of an effective anti-caries therapeutic.
Collapse
Affiliation(s)
| | | | - Madeline Krieger
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Heather Driscoll
- Department of Biology, Vermont Biomedical Research Network, Norwich University, Northfield, Vermont, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
4
|
Krieger MC, Merritt J, Raghavan R. Genome-Wide Identification of Novel sRNAs in Streptococcus mutans. J Bacteriol 2022; 204:e0057721. [PMID: 35285723 PMCID: PMC9017351 DOI: 10.1128/jb.00577-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a major pathobiont involved in the development of dental caries. Its ability to utilize numerous sugars and to effectively respond to environmental stress promotes S. mutans proliferation in oral biofilms. Because of their quick action and low energetic cost, noncoding small RNAs (sRNAs) represent an ideal mode of gene regulation in stress response networks, yet their roles in oral pathogens have remained largely unexplored. We identified 15 novel sRNAs in S. mutans and show that they respond to four stress-inducing conditions commonly encountered by the pathogen in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. To better understand the role of sRNAs in S. mutans, we further explored the function of the novel sRNA SmsR4. Our data demonstrate that SmsR4 regulates the enzyme IIA (EIIA) component of the sorbitol phosphotransferase system, which transports and phosphorylates the sugar alcohol sorbitol. The fine-tuning of EIIA availability by SmsR4 likely promotes S. mutans growth while using sorbitol as the main carbon source. Our work lays a foundation for understanding the role of sRNAs in regulating gene expression in stress response networks in S. mutans and highlights the importance of the underexplored phenomenon of posttranscriptional gene regulation in oral bacteria. IMPORTANCE Small RNAs (sRNAs) are important gene regulators in bacteria, but the identities and functions of sRNAs in Streptococcus mutans, the principal bacterium involved in the formation of dental caries, are unknown. In this study, we identified 15 putative sRNAs in S. mutans and show that they respond to four common stress-inducing conditions present in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. We further show that the novel sRNA SmsR4 likely modulates sorbitol transport into the cell by regulating SMU_313 mRNA, which encodes the EIIA subunit of the sorbitol phosphotransferase system. Gaining a better understanding of sRNA-based gene regulation may provide new opportunities to develop specific inhibitors of S. mutans growth, thereby improving oral health.
Collapse
Affiliation(s)
- Madeline C Krieger
- Department of Biology, Portland State University, Portland, Oregon, USA
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antoniogrid.215352.2, San Antonio, Texas, USA
| |
Collapse
|
5
|
Small RNAs Asserting Big Roles in Mycobacteria. Noncoding RNA 2021; 7:ncrna7040069. [PMID: 34842799 PMCID: PMC8628891 DOI: 10.3390/ncrna7040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with 10.4 million new cases per year reported in the human population. Recent studies on the Mtb transcriptome have revealed the abundance of noncoding RNAs expressed at various phases of mycobacteria growth, in culture, in infected mammalian cells, and in patients. Among these noncoding RNAs are both small RNAs (sRNAs) between 50 and 350 nts in length and smaller RNAs (sncRNA) < 50 nts. In this review, we provide an up-to-date synopsis of the identification, designation, and function of these Mtb-encoded sRNAs and sncRNAs. The methodological advances including RNA sequencing strategies, small RNA antagonists, and locked nucleic acid sequence-specific RNA probes advancing the studies on these small RNA are described. Initial insights into the regulation of the small RNA expression and putative processing enzymes required for their synthesis and function are discussed. There are many open questions remaining about the biological and pathogenic roles of these small non-coding RNAs, and potential research directions needed to define the role of these mycobacterial noncoding RNAs are summarized.
Collapse
|
6
|
Broglia L, Lécrivain AL, Renault TT, Hahnke K, Ahmed-Begrich R, Le Rhun A, Charpentier E. An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3'-to-5' exoRNases and RNase Y. Nat Commun 2020; 11:1587. [PMID: 32221293 PMCID: PMC7101322 DOI: 10.1038/s41467-020-15387-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/29/2020] [Indexed: 11/29/2022] Open
Abstract
RNA degradation is an essential process that allows bacteria to control gene expression and adapt to various environmental conditions. It is usually initiated by endoribonucleases (endoRNases), which produce intermediate fragments that are subsequently degraded by exoribonucleases (exoRNases). However, global studies of the coordinated action of these enzymes are lacking. Here, we compare the targetome of endoRNase Y with the targetomes of 3′-to-5′ exoRNases from Streptococcus pyogenes, namely, PNPase, YhaM, and RNase R. We observe that RNase Y preferentially cleaves after guanosine, generating substrate RNAs for the 3′-to-5′ exoRNases. We demonstrate that RNase Y processing is followed by trimming of the newly generated 3′ ends by PNPase and YhaM. Conversely, the RNA 5′ ends produced by RNase Y are rarely further trimmed. Our strategy enables the identification of processing events that are otherwise undetectable. Importantly, this approach allows investigation of the intricate interplay between endo- and exoRNases on a genome-wide scale. Bacterial RNA degradation is typically initiated by endoribonucleases and followed by exoribonucleases. Here the authors report the targetome of endoRNase Y in Streptococcus pyogenes, revealing the interplay between RNase Y and 3′-to-5′ exoribonuclease PNPase and YhaM.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Anne-Laure Lécrivain
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden
| | - Thibaud T Renault
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.,Institute for Biology, Humboldt University, D-10115, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Rina Ahmed-Begrich
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany.,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany.
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117, Berlin, Germany. .,Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117, Berlin, Germany. .,Institute for Biology, Humboldt University, D-10115, Berlin, Germany. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187, Umeå, Sweden.
| |
Collapse
|
7
|
Broglia L, Materne S, Lécrivain AL, Hahnke K, Le Rhun A, Charpentier E. RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B. RNA Biol 2018; 15:1336-1347. [PMID: 30290721 PMCID: PMC6284565 DOI: 10.1080/15476286.2018.1532253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5′ untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5′ UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5′ UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5′ UTR and on the role of RNase Y in speB regulation.
Collapse
Affiliation(s)
- Laura Broglia
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Solange Materne
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anne-Laure Lécrivain
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Karin Hahnke
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
8
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
9
|
Al-Khateeb AA, Limberg JK, Barnes JN, Joyner MJ, Charkoudian N, Curry TB. Acute cyclooxygenase inhibition and baroreflex sensitivity in lean and obese adults. Clin Auton Res 2016; 27:17-23. [PMID: 27838779 DOI: 10.1007/s10286-016-0389-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Obese adults exhibit increased levels of inflammation, which may negatively affect blood pressure regulation. Based on existing literature, we hypothesized: (1) baroreflex sensitivity would be lower in obese adults when compared to lean adults; (2) acute ibuprofen (IBU, a cyclooxygenase inhibitor and nonsteroidal antiinflammatory agent) administration would increase baroreflex sensitivity in obese adults, with no effect in lean adults. METHODS Seven lean (4 male, 3 female) and six obese (5 M, 1 F) adults completed two visits randomized to control (CON) or IBU (800 mg oral). On each visit, blood pressure (intra-arterial catheter), heart rate (ECG), and muscle sympathetic nerve activity (MSNA, microneurography) were measured continuously. Sympathetic and cardiac baroreflex sensitivities were assessed using the modified Oxford technique. RESULTS Measures of systemic inflammation [C-reactive protein (CRP) and interleukin-6 (IL-6)] were higher in obese adults when compared to lean adults and tended to decrease with IBU (IL-6: p < 0.05; CRP: p = 0.14). Cardiac baroreflex sensitivity was lower in obese adults (14 ± 2 vs. 24 ± 2 ms/mmHg, p = 0.02), whereas sympathetic baroreflex sensitivity was higher in obese adults (-3.6 ± 0.5 vs. -2.1 ± 0.5 bursts/100 beats/mmHg, p = 0.03) when compared to lean. There was no effect of IBU on cardiac or sympathetic baroreflex sensitivity in either group (p value range 0.20-0.71). CONCLUSION Despite obese individuals exhibiting higher levels of systemic inflammation and lower cardiac baroreflex sensitivity when compared to lean adults, an acute dose of IBU has no effect on cardiac or sympathetic baroreflex sensitivity.
Collapse
Affiliation(s)
- Abdulrahman A Al-Khateeb
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Jill N Barnes
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
10
|
Meyer MM. The role of mRNA structure in bacterial translational regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27301829 DOI: 10.1002/wrna.1370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023]
Abstract
The characteristics of bacterial messenger RNAs (mRNAs) that influence translation efficiency provide many convenient handles for regulation of gene expression, especially when coupled with the processes of transcription termination and mRNA degradation. An mRNA's structure, especially near the site of initiation, has profound consequences for how readily it is translated. This property allows bacterial gene expression to be altered by changes to mRNA structure induced by temperature, or interactions with a wide variety of cellular components including small molecules, other RNAs (such as sRNAs and tRNAs), and RNA-binding proteins. This review discusses the links between mRNA structure and translation efficiency, and how mRNA structure is manipulated by conditions and signals within the cell to regulate gene expression. The range of RNA regulators discussed follows a continuum from very complex tertiary structures such as riboswitch aptamers and ribosomal protein-binding sites to thermosensors and mRNA:sRNA interactions that involve only base-pairing interactions. Furthermore, the high degrees of diversity observed for both mRNA structures and the mechanisms by which inhibition of translation occur have significant consequences for understanding the evolution of bacterial translational regulation. WIREs RNA 2017, 8:e1370. doi: 10.1002/wrna.1370 For further resources related to this article, please visit the WIREs website.
Collapse
|
11
|
Palmer SR, Burne RA. Post-transcriptional regulation by distal Shine-Dalgarno sequences in the grpE-dnaK intergenic region of Streptococcus mutans. Mol Microbiol 2015; 98:302-17. [PMID: 26172310 DOI: 10.1111/mmi.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
A unique 373 bp region (igr66) between grpE and dnaK of Streptococcus mutans lacks a promoter but is required for optimal production of DnaK. Northern blotting using probes specific to hrcA, igr66 or dnaK revealed multiple transcripts produced from the dnaK operon and 5'-RACE mapped 5' termini of multiple dnaK transcripts within igr66. One product mapped to a predicted 5'-SL (stem-loop) and two others mapped just 5' to Shine-Dalgarno (SD)-like sequences located immediately upstream to dnaK and to a predicted SL 120 bp upstream of the dnaK start codon (3'-SL). A collection of cat reporter-gene strains containing mutant derivatives of igr66 were engineered. Chloramphenicol acetyltransferase (CAT) activity varied greatly between strains, but there were no correlative changes in cat mRNA levels. Interestingly, mutations introduced into the SD-like sequences 5' to the 3'-SL resulted in an 83-98% decrease in CAT activity. Markerless point mutations introduced upstream of dnaK in the SD-like sequences impaired growth at elevated temperatures and resulted in up to a 40% decrease in DnaK protein after heat shock. Collectively, these results indicate processing within igr66 enhances translation in a temperature dependent manner via non-canonical ribosome binding sites positioned >120 bp upstream of dnaK.
Collapse
Affiliation(s)
- Sara R Palmer
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
12
|
Vercruysse M, Köhrer C, Davies BW, Arnold MFF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014; 10:e1004175. [PMID: 24901994 PMCID: PMC4047096 DOI: 10.1371/journal.ppat.1004175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3′ end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3′ end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes. Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Markus F. F. Arnold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachussets, United States of America
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rosenzweig JA, Chopra AK. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol 2013; 3:81. [PMID: 24312901 PMCID: PMC3832800 DOI: 10.3389/fcimb.2013.00081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/30/2013] [Indexed: 11/30/2022] Open
Abstract
Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The three pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica) are all psychrotropic bacteria capable of growth at 4°C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase). PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae [where it typically influences the type three secretion system (TTSS)]. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease), RhlB (RNA helicase), and enolase (glycolytic enzyme) in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome-dependent and -independent roles played by PNPase in yersiniae stress responses.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University Houston, TX, USA ; Department of Environmental and Interdisciplinary Sciences, Texas Southern University Houston, TX, USA
| | | |
Collapse
|
14
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
15
|
Le Breton Y, Mistry P, Valdes KM, Quigley J, Kumar N, Tettelin H, McIver KS. Genome-wide identification of genes required for fitness of group A Streptococcus in human blood. Infect Immun 2013; 81:862-75. [PMID: 23297387 PMCID: PMC3584890 DOI: 10.1128/iai.00837-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022] Open
Abstract
The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Pragnesh Mistry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kayla M. Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Jeffrey Quigley
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Nikhil Kumar
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
16
|
Romilly C, Chevalier C, Marzi S, Masquida B, Geissmann T, Vandenesch F, Westhof E, Romby P. Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in Staphylococcus aureus. RNA Biol 2012; 9:1461-72. [PMID: 23134978 DOI: 10.4161/rna.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The endoribonuclease III (RNase III) belongs to the enzyme family known to process double-stranded RNAs. Staphylococcus aureus RNase III was shown to regulate, in concert with the quorum sensing induced RNAIII, the degradation of several mRNAs encoding virulence factors and the transcriptional repressor of toxins Rot. Two of the mRNA-RNAIII complexes involve fully base paired loop-loop interactions with similar sequences that are cleaved by RNase III at a unique position. We show here that the sequence of the base pairs within the loop-loop interaction is not critical for RNase III cleavage, but that the co-axial stacking of three consecutive helices provides an ideal topology for RNase III recognition. In contrast, RNase III induces several strong cleavages in a regular helix, which carries a sequence similar to the loop-loop interaction. The introduction of a bulged loop that interrupts the regular helix restrains the number of cleavages. This work shows that S. aureus RNase III is able to bind and cleave a variety of RNA-mRNA substrates, and that specific structure elements direct the action of RNase III.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Marincola G, Schäfer T, Behler J, Bernhardt J, Ohlsen K, Goerke C, Wolz C. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes. Mol Microbiol 2012; 85:817-32. [PMID: 22780584 DOI: 10.1111/j.1365-2958.2012.08144.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilization of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Romilly C, Caldelari I, Parmentier D, Lioliou E, Romby P, Fechter P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biol 2012; 9:402-13. [PMID: 22546940 DOI: 10.4161/rna.20103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is one of the major human pathogens, which causes numerous community-associated and hospital-acquired infections. The regulation of the expression of numerous virulence factors is coordinated by complex interplays between two component systems, transcriptional regulatory proteins, and regulatory RNAs. Recent studies have identified numerous novel RNAs comprising cis-acting regulatory RNAs, antisense RNAs, small non coding RNAs and small mRNAs encoding peptides. We present here several examples of RNAs regulating S. aureus pathogenicity and describe various aspects of antisense regulation.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | | | | | | |
Collapse
|