1
|
Świerczewska M, Nowacka M, Stasiak P, Iżycki D, Sterzyńska K, Płóciennik A, Nowicki M, Januchowski R. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother 2025; 183:117804. [PMID: 39787968 DOI: 10.1016/j.biopha.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions. Molecular analyses identified overexpression of essential drug resistance-related genes, including MDR1 and BCRP, and extracellular matrix (ECM) components, such as MYOT and SPP1, which were more pronounced in resistant cell lines. MDR1 and BCRP overexpression contribute to chemotherapy resistance in OC by expelling drugs like DOX and TOP. Targeting these transporters with inhibitors or gene silencing could improve drug efficacy, making them key therapeutic targets to enhance treatment outcomes for drug-resistant OC. The study further showed that EMT-associated markers, including VIM, SNAIL1, and SNAIL2, were upregulated in the 3D spheroids, reflecting a more mesenchymal phenotype. These findings suggest that factors beyond gene expression, such as spheroid architecture, cell-cell interactions, and drug penetration, contribute to the enhanced resistance observed in 3D cultures. These results highlight the importance of 3D cell culture models for a more accurate representation of tumour drug resistance mechanisms in ovarian cancer, providing valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland; Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Piotr Stasiak
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., Poznan 61-866, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Wieniawskiego 1 St., Poznan 61-712, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| |
Collapse
|
2
|
Nosrati H, Heydari M. Titanium dioxide nanoparticles: a promising candidate for wound healing applications. BURNS & TRAUMA 2025; 13:tkae069. [PMID: 39759542 PMCID: PMC11697110 DOI: 10.1093/burnst/tkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Indexed: 01/07/2025]
Abstract
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO2 NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties. Furthermore, these nanoparticles can be modified to enhance their therapeutic benefits. Scaffolds and dressings containing TiO2 NPs have demonstrated promising outcomes in accelerating wound healing and enhancing tissue regeneration. This review paper covers the wound healing process, the biological properties of TiO2 NPs that make them suitable for promoting wound healing, methods for synthesizing TiO2 NPs, the use of scaffolds and dressings containing TiO2 NPs in wound healing, the application of modified TiO2 NPs in wound healing, and the potential toxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Morteza Heydari
- Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Yang C, Fu J, Zheng F, Fu Y, Duan X, Zuo R, Zhu J. Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury. J Cardiothorac Surg 2024; 19:665. [PMID: 39707526 DOI: 10.1186/s13019-024-03149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine. METHODS Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells. CCK-8 assay was used to assay cell proliferation activity. Flow Cytometry was used to detect cell apoptosis. Dichloro-dihydrofluorescein diacetate was used to detect ROS levels. The expression of LC3 was detected by Immunofluorescence Staining. Western blotting detected the expression of related proteins. The mRNA levels of inflammatory factors were detected by RT-qPCR. RESULTS Aconitine inhibits cardiomyocyte proliferation, induces apoptosis and secretion of inflammatory factors. Aconitine activates the P38/MAPK/Nrf2 pathway, induces ROS increase, and promotes autophagy. NAC can inhibit proliferation inhibition, apoptosis, inflammation and P38/MAPK/Nrf2 pathway activation induced by aconitine. Rap and P38 activators can partially recover the effects of NAC on proliferation, apoptosis, inflammation and autophagy of cardiomyocytes. CONCLUSION Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury.
Collapse
Affiliation(s)
- Chunai Yang
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Jinxiao Fu
- Department of Geriatric Medicine, The Affiliated Hospital of Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Fenshuang Zheng
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Yangshan Fu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xueqiong Duan
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ruiling Zuo
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Junbo Zhu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| |
Collapse
|
4
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. The Roles of Oxidative Stress and Red Blood Cells in the Pathology of the Varicose Vein. Int J Mol Sci 2024; 25:13400. [PMID: 39769165 PMCID: PMC11678264 DOI: 10.3390/ijms252413400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review discusses sources of reactive oxygen species, enzymatic antioxidant systems, and low molecular weight antioxidants. We present the pathology of varicose veins (VVs), including factors such as hypoxia, inflammation, dysfunctional endothelial cells, risk factors in varicose veins, the role of RBCs in venous thrombus formation, the influence of reactive oxygen species (ROS) and RBCs on VV pathology, and the role of hemoglobin in the damage of particles and macromolecules in VVs. This review discusses the production of ROS, enzymatic and nonenzymatic antioxidants, the pathogenesis of varicose veins as a pathology based on hypoxia, inflammation, and oxidative stress, as well as the participation of red blood cells in the pathology of varicose veins.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| |
Collapse
|
5
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Udrea AM, Staicu A, Smarandache A, Andrei IR, Badea MA, Avram S, Pascu ML, Pirvulescu RA, Balas M. Enhancement of chlorpromazine efficacy in breast cancer treatment by 266 nm laser irradiation. Sci Rep 2024; 14:30329. [PMID: 39639119 PMCID: PMC11621703 DOI: 10.1038/s41598-024-82088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Breast cancer remains a global health challenge, prompting interest in the anticancer properties of other drugs, including chlorpromazine (CPZ). This study presents a novel approach in breast cancer treatment using laser irradiated CPZ. CPZ dissolved in distilled water, was exposed to 266 nm laser irradiation for varying durations, characterized by UV-Vis and FTIR spectroscopy, followed by drug-likeness and ADME-Tox predictions. In vitro assays evaluated the cytotoxicity and cellular effects on MCF-7 breast cancer cells, and compared with MCF-12 A healthy cell line. Laser irradiation altered CPZ molecular structure resulting in photoproducts with favourable drug-like properties and ADME-Tox profiles. In vitro evaluations demonstrate dose and irradiation time-dependent cytotoxicity against breast cancer cells, and reduced toxicity on healthy cell line. Significant alterations in F-actin organization, and excessive ROS generation were also proved, suggesting the potential of laser-modified CPZ for breast cancer therapy. This study introduces a novel approach to breast cancer treatment through laser irradiated CPZ, highlighting promising advancements in therapy and emphasizing the role of laser-generated compounds.
Collapse
Affiliation(s)
- Ana Maria Udrea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, Bucharest, 050663, Romania
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Angela Staicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania.
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
| | - Ionut Relu Andrei
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Mihail Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania
| | | | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania.
| |
Collapse
|
7
|
Naraki K, Ghasemzadeh Rahbardar M, Razavi BM, Aminifar T, Khajavi Rad A, Amoueian S, Hosseinzadeh H. The power of trans-sodium crocetinate: exploring its renoprotective effects in a rat model of colistin-induced nephrotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10155-10174. [PMID: 38995374 DOI: 10.1007/s00210-024-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Colistin, a multidrug-resistant gram-negative bacterial infection medication, has been associated with renal impairment and failure. Trans-sodium crocetinate (TSC), a saffron-derived chemical recognized for its antioxidant and nephroprotective properties, was studied in this study to determine its potential to alleviate the nephrotoxic effects of colistin. Forty-two male Wistar rats were randomly classified into seven groups (n = 6): (1) control (normal saline, 12 days, i.p.), (2) colistin (22 mg/kg, 7 days, i.p.), (3-5) colistin + TSC (25, 50, and 100 mg/kg, 12 days, i.p., starting from 5 days before colistin), (6) TSC (100 mg/kg, 12 days, i.p.), (7) colistin + vitamin E (100 IU/kg, 12 days, i.p). On day 13, the rats were euthanized and the serum content of creatinine, BUN, Na+, and K+, as well as oxidative stress (GSH, MDA, SOD, CAT), inflammatory (IL-1β), apoptotic (Bax, Bcl-2, caspase-3, 8, 9), and autophagy (Beclin-1, LC3) markers, NGAL, and histopathological changes in the kidney were measured. Colistin significantly increased serum creatinine, BUN, MDA, IL-1β, caspase-3,8,9, Bax, Beclin-1, LC3, and NGAL levels in kidney tissue. It also caused inflammation, focal necrosis of tubular epithelial cells, protein cast, and acute tubular necrosis. Furthermore, colistin decreased SOD, CAT, GSH, and Bcl-2 levels. TSC and vitamin E administration along with colistin restored most of the alterations induced by colistin. Overall, it could be concluded that colistin induces oxidative stress, inflammation, autophagy, and apoptosis, which can cause kidney injury. However, TSC can also be used as a therapeutic agent to reduce injuries caused by colistin.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Aminifar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Boreham R, Ball JS, Hetheridge M, Owen S, Trznadel M, Tyler CR. Elevated temperature exacerbates pharmaceutical-induced oxidative stress in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176001. [PMID: 39233069 DOI: 10.1016/j.scitotenv.2024.176001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
There is growing evidence that rising global temperatures resulting from climate change may exacerbate the toxic effect of pollutants and heterotherms, including fish, in which homestatic mechanisms are directly influenced by environmental temperature will be most affected. Pharmaceuticals discharged into the environment are potentially harmful to wildlife as many of their drug targets are conserved across divergent phyla. Oxidative stress (OS) is a major mechanism by which many pharmaceutical contaminants can induce toxicity but this has received little consideration in the context of effects in wildlife. Further, these mechanisms are relatively poorly understood, particularly regarding multiple stressor interactions. We used transgenic TG(EpRE:mCherry) zebrafish, developed in our laboratory for detecting OS, as our experimental model. We show that the oxidative effects of high concentrations of pharmaceuticals from three different therapeutic classes (paracetamol, diclofenac and doxorubicin) are increased at temperatures elevated by 2-5 °C above those for zebrafish standard husbandry and relevant to their current natural environment (and predicted under the IPCC 2023 scenarios for intermediate to very high greenhouse gas emissions). These OS responses were primarily seen in the pronephros, liver, and gastrointestinal tract. The increase in OS at the increased water temperature may have resulted from the elevated temperature acting as a direct additive physiological stressor to the OS imposed by the drugs and/or via the temperature increasing the chemicals oxidative effect. For paracetamol, it appeared that the elevated responses at the higher temperature of 33 °C were in part due to an increase in uptake of the drug. Our data illustrate that risk assessments for chemicals inducing OS in fish (and likely other heterotherms) should consider the influence of temperature to ensure environmental protection in future environments.
Collapse
Affiliation(s)
- Rebekah Boreham
- University of Exeter, Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Jonathan S Ball
- University of Exeter, Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Malcolm Hetheridge
- University of Exeter, Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Stewart Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Maciej Trznadel
- University of Exeter, Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Charles R Tyler
- University of Exeter, Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
9
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024:10.1007/s12012-024-09941-7. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
10
|
Xu G, Long X, Zhai J, Liu Y, Wang C, Li J, Wang X. Toxicological effects and defense mechanisms induced by beta-cypermethrin in Drosophila melanogaster. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122845. [PMID: 39405863 DOI: 10.1016/j.jenvman.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Widespread use of the pyrethroid insecticide beta-cypermethrin (beta-CYP) has led to adverse effects on nontarget populations within agroecosystems. Despite the efficacy of beta-CYP in pest control, its toxicological and defense mechanisms remain incompletely understood. In the present study, we explored the toxicological effects, antioxidant mechanisms and immune response against beta-CYP using Drosophila melanogaster, a well-established model organism for the study of insect biology, to represent the broader class of nontarget organisms. We exposed Drosophila larvae to 0.667 μg/mL beta-CYP and revealed that delayed development and caused intestinal epithelial damage in larvae. To gain insights into the molecular underpinnings of these effects, RNA sequencing analysis and quantitative polymerase chain reaction validation were performed. These analyses revealed that the messenger RNA levels of glutathione S-transferase were increased, third instar larvae exhibited an increase in reactive oxygen species content and a corresponding increase in antioxidant enzyme activity in response to beta-CYP exposure, indicating an upregulated response to oxidative stress. Beta-CYP also activated Hippo pathway to resist apoptosis and promote cell proliferation. Moreover, beta-CYP induced melanization and Toll immune pathways involved in immune response in Drosophila larvae, specifically the Toll pathway gene Drs. This activation suggests that Drosophila increases antioxidant defenses and promotes mitosis in damaged tissues as compensatory mechanisms to mitigate the cytotoxic effects of beta-CYP. These findings provide new insight into the mechanisms of beta-CYP-induced toxicity and the defense mechanisms in insects; they may also inform strategies for the sustainable use of insecticides and the development of mitigation measures to protect nontarget species in agroecosystems.
Collapse
Affiliation(s)
- Guangxia Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Xiaoyu Long
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Yunhao Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China
| | - Chaowei Wang
- Suzhou Academy of Agricultural Sciences, Anhui, 234000, China
| | - Jinbu Li
- Suzhou Vocational and Technical College, Anhui, 234000, China.
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China.
| |
Collapse
|
11
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
12
|
Esposito A, Ferraresi A, Vallino L, Garavaglia B, Dhanasekaran DN, Isidoro C. Three-Dimensional In Vitro Cell Cultures as a Feasible and Promising Alternative to Two-Dimensional and Animal Models in Cancer Research. Int J Biol Sci 2024; 20:5293-5311. [PMID: 39430243 PMCID: PMC11488579 DOI: 10.7150/ijbs.96469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer continues to increase, not only affecting the health-related quality of life of patients but also causing an elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and development strategies employ expensive animal models (including the so-called "humanized mice") that not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs because they do not faithfully replicate human physiology as well as the patient's tumor microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing necessity to develop more accurate cancer models has increasingly emphasized the importance of three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. Despite their limitations, these models collectively enhance our understanding of the mechanisms underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before clinical testing and, consequently, improve therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
13
|
You Y, Lin S, Tang C, Li Y, Yan D, Wang D, Chen X. Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications. J Mater Chem B 2024; 12:8812-8824. [PMID: 39150370 DOI: 10.1039/d4tb01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan You
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Songling Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Chengwei Tang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuchao Li
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Annareddy S, Ghewade B, Jadhav U, Wagh P. Navigating Drug-Induced Lung Disease (DILD): A Comprehensive Review on Management and Prevention Strategies. Cureus 2024; 16:e69954. [PMID: 39445304 PMCID: PMC11496594 DOI: 10.7759/cureus.69954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Drug-induced lung disease (DILD) is a significant and often overlooked adverse effect of pharmacological treatments, encompassing a range of pulmonary disorders triggered by medications. This review provides a comprehensive overview of DILD, focusing on its definition, pathophysiology, and clinical implications. We explore the epidemiology of DILD, highlighting the prevalence of various drugs associated with pulmonary toxicity and the factors influencing susceptibility. The review details the clinical presentation of DILD, including common symptoms and diagnostic challenges, and outlines diagnostic modalities such as imaging, pulmonary function tests, and invasive procedures. Management strategies are discussed, emphasizing the importance of timely drug discontinuation, supportive care, and the role of corticosteroids and novel therapies. Preventive measures, including pre-treatment evaluations and ongoing monitoring, are also addressed. The review concludes by examining future research directions and emerging therapies, aiming to enhance the understanding and management of DILD. This review is intended to aid healthcare professionals in recognizing, managing, and preventing drug-induced lung diseases, ultimately improving patient outcomes and safety.
Collapse
Affiliation(s)
- Srinivasulareddy Annareddy
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Petchimuthu P, Ala C, Kunjiappan S, Pavadai P, Sankaranarayanan M, Ram Kumar Pandian S, Sundar K. Pharmacoinformatics-based identification of phytochemicals from Solanum torvum Swartz. fruits as potential inhibitors for MAPK14 protein. J Biomol Struct Dyn 2024; 42:7795-7811. [PMID: 37583290 DOI: 10.1080/07391102.2023.2246562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Plants and phytocompounds gained more attention because of their unrivalled variety of chemical diversity. In this view, the present study was executed to predict the anticancer potential of Solanum torvum Swartz. fruits derived phytocompounds against one of the breast cancer target proteins (MAPK14, PDB ID: 5ETA, resolution: 2.80 Å) through pharmacoinformatics-based screening and molecular dynamics simulation tools. Initially, a graph theoretical network approach was used to visualize the genes, enzymes, and proteins involved in the signalling pathway of breast cancer and identify the significant target protein (MAPK14). A total of thirty-three active compounds were selected from S. torvum sw. through the IMPPAT database, and their structures were drawn by Chemsketch software. The drug-like behaviours of the compounds were assessed through pharmacokinetics and physicochemical characterization studies. Five compounds, namely chlorogenin (-10.90 kcal × mol-1), corosolic acid (-10.80 kcal × mol-1), solaspigenin (-10.80 kcal × mol-1), paniculogenin (-10.70 kcal × mol-1), spirostane-3,6-dione (-10.70 kcal × mol-1) exhibited top binding score against MAPK14, these are higher than that of the standard drug (Doxorubicin) (-8.60 kcal × mol-1). Additionally, the five top-binding compounds revealed better drug-likeness traits and the lowest toxicity profiles. MD simulation studies confirmed the stability of the top five scored compounds with the MAPK14 binding pockets. According to these findings, the selected five compounds might be used as significant MAPK14 inhibitors and can be used as new medicines for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priya Petchimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | | | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
17
|
El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AGS, Hassanein MMH, Ali FEM, Bakr AG. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5649-5662. [PMID: 38285279 PMCID: PMC11329704 DOI: 10.1007/s00210-024-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS (7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathological heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclusion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hesham H Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Kingdom of Saudi Arabia
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
18
|
Morris JL, Letson HL, Dobson GP. Safety evaluation of adenosine, lidocaine and magnesium (ALM) intranasal therapy toward human nasal epithelial cells in vitro. Basic Clin Pharmacol Toxicol 2024; 135:98-108. [PMID: 38784974 DOI: 10.1111/bcpt.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Adenosine, lidocaine and Mg2+ (ALM) solution is an emerging therapy that reduces secondary injury after intravenous administration in experimental models of traumatic brain injury (TBI). Intranasal delivery of ALM may offer an alternative route for rapid, point-of-care management of TBI. As a preliminary safety screen, we evaluated whether ALM exerts cytotoxic or inflammatory effects on primary human nasal epithelial cells (pHNEC) in vitro. Submerged monolayers and air-liquid interface cultures of pHNEC were exposed to media only, normal saline only, therapeutic ALM or supratherapeutic ALM for 15 or 60 min. Safety was measured through viability, cytotoxicity, apoptosis, cellular and mitochondrial stress, and inflammatory mediator secretion assays. No differences were found in viability or cytotoxicity in cultures exposed to saline or ALM for up to 60 min, with no evidence of apoptosis after exposure to supratherapeutic ALM concentrations. Despite comparable inflammatory cytokine secretion profiles and mitochondrial activity, cellular stress responses were significantly lower in cultures exposed to ALM than saline. In summary, data show ALM therapy has neither adverse toxic nor inflammatory effects on human nasal epithelial cells, setting the stage for in vivo toxicity studies and possible clinical translation of intranasal ALM therapy for TBI treatment.
Collapse
Affiliation(s)
- Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| |
Collapse
|
19
|
Dangabar Shadrack A, Garba A, Samuel Ndidi U, Aminu S, Muhammad A. Isometamidium chloride alters redox status, down-regulates p53 and PARP1 genes while modulating at proteomic level in Drosophila melanogaster. Drug Chem Toxicol 2024; 47:416-426. [PMID: 36883353 DOI: 10.1080/01480545.2023.2186314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
As trypanocide, several side effects have been reported in the use of Isometamidium chloride. This study was therefore, designed to evaluate its ability to induce oxidative stress and DNA damage using D. melanogaster as a model organism. The LC50 of the drug was determined by exposing the flies (1-3 days old of both genders) to six different concentrations (1 mg, 10 mg, 20 mg, 40 mg, 50 mg and 100 mg per 10 g of diet) of the drug for a period of seven days. The effect of the drug on survival (28 days), climbing behavior, redox status, oxidative DNA lesion, expression of p53 and PARP1 (Poly-ADP-Ribose Polymerase-1) genes after five days exposure of flies to 4.49 mg, 8.97 mg, 17.94 mg and 35.88 mg per 10 g diet was evaluated. The interaction of the drug in silico with p53 and PARP1 proteins was also evaluated. The result showed the LC50 of isometamidium chloride to be 35.88 mg per 10 g diet for seven days. Twenty-eight (28) days of exposure to isometamidium chloride showed a decreased percentage survival in a time and concentration-dependent manner. Isometamidium chloride significantly (p < 0.05) reduced climbing ability, total thiol level, Glutathione-S-transferase, and Catalase activity. The level of H2O2 was significantly (p < 0.05) increased. The result also showed significant (p < 0.05) reduction in the relative mRNA levels of p53 and PARP1 genes. The in silico molecular docking of isometamidium with p53 and PARP1 proteins showed high binding energy of -9.4 Kcal/mol and -9.2 Kcal/mol respectively. The results suggest that isometamidium chloride could be cytotoxic and a potential inhibitor of p53 and PARP1 proteins.
Collapse
Affiliation(s)
- Apollos Dangabar Shadrack
- Department of Food Technology and Home Economics, National Agricultural Extension Research and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Auwalu Garba
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Africa Center of Excellence on Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Center for Biomedical Research, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
20
|
Lu Z, Shen S, Lin S. The neuroprotective effects of SFGDI on sirtuin 3-related oxidative stress by regulating the Sirt3/SOD/ROS pathway and energy metabolism in BV2 cells. Food Funct 2024; 15:6692-6704. [PMID: 38828499 DOI: 10.1039/d4fo01512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recently, the investigation of neuroprotective peptides has gained attention in addressing memory impairment and cognitive decline. Although the potential neuroprotective peptide Serine-Phenylalanine-Glycine-Aspartic acid-Isoleucine (SFGDI) has been identified from sea cucumber, the molecular mechanisms remain unclear. This study was conducted to explore the neuroprotection of SFGDI against 3-TYP-induced oxidative stress in BV2 cells. The results showed a retention rate of 76.70% during in vitro simulated gastrointestinal digestion and an absorption rate of 10.41% in a rat-everted gut sac model for SFGDI. Two hours following the administration of SFGDI via gavage in mice, a notable fluorescence was observed in the brain, indicating a potential neuroprotection of SFGDI through its interactions with nerve cells. By utilizing a model of oxidative stress injury induced by 3-TYP in BV2 cells, it was determined that pretreatment with SFGDI (50-200 μg mL-1) resulted in a dose-dependent reduction in the acetylated SOD level, leading to enhanced SOD activity and reduced levels of ROS and MDA. In addition, this pretreatment triggered an increase in unsaturated lipid levels, which helped maintain the intracellular lipid metabolism balance and preserve the mitochondrial function and glycolysis levels to regulate energy metabolism. The results of this study indicate that SFGDI demonstrates neuroprotective properties through its modulation of the Sirt3/SOD/ROS pathway, regulation of lipid metabolism, and enhancement of energy metabolism in BV2 cells. These findings suggest potential novel therapeutic approaches for addressing Sirt3-related memory deficits and neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Siqi Shen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| |
Collapse
|
21
|
He C, Ma L, Hirst J, Li F, Wu H, Liu W, Zhao J, Xu F, Godwin AK, Wang X, Li B. Natural compound Alternol exerts a broad anti-cancer spectrum and a superior therapeutic safety index in vivo. Front Pharmacol 2024; 15:1409506. [PMID: 38855749 PMCID: PMC11157072 DOI: 10.3389/fphar.2024.1409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Alternol is a natural compound isolated from the fermentation of a mutated fungus. We have demonstrated its potent anti-cancer effect via the accumulation of radical oxygen species (ROS) in prostate cancer cells in vitro and in vivo. In this study, we tested its anti-cancer spectrum in multiple platforms. Methods We first tested its anti-cancer spectrum using the National Cancer Institute-60 (NCI-60) screening, a protein quantitation-based assay. CellTiter-Glo screening was utilized for ovarian cancer cell lines. Cell cycle distribution was analyzed using flow cytometry. Xenograft models in nude mice were used to assess anti-cancer effect. Healthy mice were tested for the acuate systemic toxicity. Results Our results showed that Alternol exerted a potent anti-cancer effect on 50 (83%) cancer cell lines with a GI50 less than 5 µM and induced a lethal response in 12 (24%) of those 50 responding cell lines at 10 µM concentration. Consistently, Alternol displayed a similar anti-cancer effect on 14 ovarian cancer cell lines in an ATP quantitation-based assay. Most interestingly, Alternol showed an excellent safety profile with a maximum tolerance dose (MTD) at 665 mg/kg bodyweight in mice. Its therapeutic index was calculated as 13.3 based on the effective tumor-suppressing doses from HeLa and PC-3 cell-derived xenograft models. Conclusion Taken together, Alternol has a broad anti-cancer spectrum with a safe therapeutic index in vivo.
Collapse
Affiliation(s)
- Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'An Jiaotong University, Xi'An, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Linlin Ma
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fei Li
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Wu
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Xu
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
22
|
Mohammed AH, Aljarallah AS, Huq M, Mackawy AMH, Alharbi BF, Almutairi KS, Alruwetei AM, Almatroudi AAA, Alharbi HO, Aljohery SAMA, Wasti AZ. Evaluation of the immune system status and hematological dyscrasias, among amphetamine and cannabis abusers at Eradah Hospital in Qassim, Saudi Arabia. Sci Rep 2024; 14:10600. [PMID: 38719969 PMCID: PMC11079053 DOI: 10.1038/s41598-024-61182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
This cross-sectional study aims to evaluate the immune system status and hematological disturbances among individuals who abuse amphetamines and cannabis. Substance abuse, particularly of amphetamines and cannabis, has been associated with various adverse effects on the body, including potential impacts on the immune system and hematological parameters. However, limited research has been conducted to comprehensively assess these effects in a cross-sectional design. Additionally, fungal infections are on the rise internationally, and immune-compromised people are particularly susceptible. The study will recruit a sample of amphetamine and cannabis abusers (n = 50) at the Eradah Hospital in the Qassim Region of Buraydah and assess their sociodemographic and biochemical variables, including blood indices and differential WBC indices, liver, and kidney profiles. Additionally, 50 sputum samples in total were cultured for testing for fungus infections. To obtain the descriptive statistics, the data was imported into Microsoft Excel and subjected to statistical analysis using SPSS 22.0. Amphetamine and cannabis abuser's sociodemographic variables analysis observed that the majority (52%) were aged 18-30, with 56% in secondary school. Unemployment was a significant issue, and most had no other health issues. The majority (50%) had 5-10 years of abuse, while 32% had less than 5 years, and only 18% had been drug abusers for more than 10 years. There were significant changes (p < 0.001) in all different leukocyte blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils. Furthermore, a microscopic examination of blood films from individuals who misuse the combination of the medications "amphetamine and cannabis" reveals hazardous alterations in Neutrophils. Out of 50, 35 sputum samples showed positive growth on Sabouraud dextrose agar (SDA) with chloramphenicol antibiotic, indicating a unicellular fungal growth. The present study explores the immune system and hematological disturbances linked to amphetamine and cannabis abuse, providing insights into health risks and targeted interventions. The findings complement previous research on drug users' hematological abnormalities, particularly in white blood cells. Routine hematological tests help identify alterations in homeostatic conditions, improving patient knowledge and preventing major issues. Further research is needed on multi-drug abuse prevention, early detection, and intervention. The cross-sectional design allows for a snapshot of the immune system and hematological status among abusers, laying the groundwork for future longitudinal studies. Key Words: Drug Effect, Immunity, Epidemiology, Oxidative Stress, Inflammation.
Collapse
Affiliation(s)
- Amal Hussain Mohammed
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Atheer Saleh Aljarallah
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mohsina Huq
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Amal M H Mackawy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Basmah F Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Khulud Salem Almutairi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ahmad Abdulaziz A Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia.
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Said Abdel Mohsen A Aljohery
- Director Laboratory Department, MOH-KSA, Erada Mental Health Hospital, Buraydah, Qassim, Saudi Arabia
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Afshan Zeeshan Wasti
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia.
- Department of Biochemistry, Jinnah University for Women, Karachi, 74600, Pakistan.
| |
Collapse
|
23
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
24
|
Okiljević B, Martić N, Govedarica S, Andrejić Višnjić B, Bosanac M, Baljak J, Pavlić B, Milanović I, Rašković A. Cardioprotective and Hepatoprotective Potential of Silymarin in Paracetamol-Induced Oxidative Stress. Pharmaceutics 2024; 16:520. [PMID: 38675181 PMCID: PMC11055062 DOI: 10.3390/pharmaceutics16040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Silymarin, derived from Silybum marianum, has been used in traditional medicine for various ailments. In this study, the cardioprotective and hepatoprotective effects of silymarin against paracetamol-induced oxidative stress were examined in 28 male Swiss Webster mice, divided into four groups and treated for 7 days (via the oral route) with (a) saline 1 mL/kg (control group), (b) saline 1 mL/kg + single dose of paracetamol 110 mg/kg on the 7th day; (c) silymarin 50 mg/kg; and (d) silymarin 50 mg/kg + single dose of paracetamol 110 mg/kg on the 7th day. In vitro and in vivo antioxidant activity together with liver enzyme activity were evaluated. Histopathological and immunohistochemical assessment was performed. Silymarin mitigated paracetamol-induced liver injury by reducing oxidative stress markers such as lipid peroxidation and restoring antioxidant enzyme activity. Silymarin treatment resulted in a significant decrease in liver enzyme levels. Reduced necrosis and inflammatory infiltrate in liver tissues of silymarin-treated groups were detected as well. Immunohistochemical analysis demonstrated reduced expression of inflammatory markers (COX2, iNOS) and oxidative stress marker (SOD2) in the liver tissues of the silymarin-treated groups. Similar trends were observed in cardiac tissue. These results suggest that silymarin exerts potent hepatoprotective and cardioprotective effects against paracetamol-induced oxidative stress, making it a promising therapeutic agent for liver and heart diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Bogdan Okiljević
- Department of Cardiac Surgery, Dedinje Cardiovascular Institute, 11000 Belgrade, Serbia;
| | - Nikola Martić
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Srđan Govedarica
- Clinic of Urology, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia;
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Bojana Andrejić Višnjić
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.V.); (M.B.)
| | - Milana Bosanac
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.A.V.); (M.B.)
| | - Jovan Baljak
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Isidora Milanović
- Department of Pharmacology, Biochemistry, Pharmacy and Ecology, Academy for Applied Studies Belgrade, College of Health Sciences, 11080 Belgrade, Serbia;
| | - Aleksandar Rašković
- Department of Pharmacology, Toxicology, and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
25
|
Sousa B, Domingues I, Nunes B. Biological responses in Danio rerio by the disinfectant SDBS in SARS-CoV-2 pandemic. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104431. [PMID: 38554987 DOI: 10.1016/j.etap.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The use of disinfectants, such as Sodium Dodecylbenzene Sulfonic acid salt (SDBS), has grown since the SARS-CoV-2 pandemic, with environmentally unknown consequences. The present study analyzed SDBS effects in the fish species Danio rerio, using a combination of biomarkers. Our data reported that larvae had their total locomotor activity increased when exposed to 1 mg/L of SDBS, but this parameter was decreased in fish exposed to 5 mg/L. A significant increment of erratic movements was reported in fish exposed to 1 and 5 mg/L of SDBS. These concentrations inhibited CYP1A1/CYP1A2, and of GSTs inhibition, suggesting SDBS is not preferentially biotransformed by these routes. Results concerning the antioxidant defense biomarkers (CAT and GPx) showed no straightforward pattern, suggesting SDBS exposure may have resulted in changes in redox balance. Finally, acetylcholinesterase activity increased. In summary, increased use of SDBS in a near future may result in deleterious effects in environmentally exposed fish.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
26
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
27
|
Pang H, Zheng K, Wang W, Zheng M, Liu Y, Yin H, Zhang D. Cefotaxime Exposure-Caused Oxidative Stress, Intestinal Damage and Gut Microbial Disruption in Artemia sinica. Microorganisms 2024; 12:675. [PMID: 38674619 PMCID: PMC11052325 DOI: 10.3390/microorganisms12040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.
Collapse
Affiliation(s)
- Huizhong Pang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Kaixuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Wenbo Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Mingjuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Yudan Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
| | - Hong Yin
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; (H.P.); (K.Z.); (W.W.); (M.Z.)
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
28
|
Groomes PV, Paul AS, Duraisingh MT. Inhibition of malaria and babesiosis parasites by putative red blood cell targeting small molecules. Front Cell Infect Microbiol 2024; 14:1304839. [PMID: 38572319 PMCID: PMC10988762 DOI: 10.3389/fcimb.2024.1304839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024] Open
Abstract
Background Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.
Collapse
Affiliation(s)
| | | | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
29
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
30
|
Tang W, Liu JR, Wang Q, Zheng YL, Zhou XY, Xie L, Dai F, Zhang S, Zhou B. Developing a novel benzothiazole-based red-emitting probe for intravital imaging of superoxide anion. Talanta 2024; 268:125297. [PMID: 37832453 DOI: 10.1016/j.talanta.2023.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Superoxide anion (O2•-), the first generated reactive oxygen species (ROS), is a critical player in cellular signaling network and redox homeostasis. Imaging of O2•-, particularly in vivo, is of concern for further understanding its roles in pathophysiological and pharmacological events. Herein, we designed a novel probe, (E)-4-(5-(2-(benzo[d]thiazol-2-yl)-2-cyanovinyl)furan-2-yl)phenyl trifluoromethane-sulfonate (BFTF), by modifying hydroxyphenyl benzothiazole (a widely used dye scaffold) which includes insertion of both an acrylonitrile unit and a furan ring to extend the total π-conjugation system and to enhance push-pull intramolecular charge transfer process, and utilization of trifluoromethanesulfonate as the response unit. Toward O2•-, the probe features near-infrared fluorescent emission (685 nm), large Stokes shift (135 nm), and deep tissue penetration (300 μm). With its help, we successfully mapped preferential generation of O2•- in HepG2 cells over L02 cells, as well as in A549 over BEAS-2B cells by β-lapachone (an anticancer agent that generates O2•-), and more importantly, visualized overproduction of O2•- in living mice with liver injury induced by acetaminophen (a well-known analgesic and antipyretic drug).
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Jun-Ru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xi-Yue Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Li Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
31
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Fang R, Li Y, Jin J, Yang F, Chen J, Zhang J. Development of Anticancer Ferric Complex Based on Human Serum Albumin Nanoparticles That Generate Oxygen in Cells to Overcome Hypoxia-Induced Resistance in Metal Chemotherapy. J Med Chem 2024; 67:1184-1196. [PMID: 38181502 DOI: 10.1021/acs.jmedchem.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
To achieve the remarkable therapeutic efficacy of a ferric (Fe) complex via a reactive oxygen species (ROS) mechanism in solid tumors, a therapeutic Fe-based Schiff-base complex (Fe1) was synthesized and encapsulated in human serum albumin (HSA) nanoparticles (NPs), which generated oxygen (O2) in cancer cells in situ. The HSA-Fe1-O2 NP (HSA-Fe1-O2NP) delivery system effectively overcame hypoxia-induced resistance in metal chemotherapy, alleviated the hypoxic condition of tumor tissues, and showed excellent tumor suppression by generating excess ROS and promoting the apoptosis of SK-N-MC tumor cells. The HSA-Fe1-O2NPs not only enhanced the ability of the Fe1 complex to target tumor cells but also decreased adverse effects in vivo.
Collapse
Affiliation(s)
- Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North Second Road 109, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
33
|
Wu D, Shen Y, Qu C, Huang P, Geng X, Zhang J, Rao Z, Wei Q, Liu S, Zhao J. Association between dietary and behavioral-based oxidative balance score and phenotypic age acceleration: a cross-sectional study of Americans. Epidemiol Health 2024; 46:e2024023. [PMID: 38271958 PMCID: PMC11176717 DOI: 10.4178/epih.e2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES In light of the rise in the global aging population, this study investigated the potential of the oxidative balance score (OBS) as an indicator of phenotypic age acceleration (PhenoAgeAccel) to better understand and potentially slow down aging. METHODS Utilizing data from the National Health and Nutrition Examination Survey collected between 2001 and 2010, including 13,142 United States adults (48.7% female and 51.2% male) aged 20 and above, OBS and PhenoAgeAccel were calculated. Weighted generalized linear regression models were employed to explore the associations between OBS and PhenoAgeAccel, including a sex-specific analysis. RESULTS The OBS demonstrated significant variability across various demographic and health-related factors. There was a clear negative correlation observed between the higher OBS quartiles and PhenoAgeAccel, which presented sex-specific. RESULTS the negative association between OBS and PhenoAgeAccel was more pronounced in male than in female. An analysis using restricted cubic splines revealed no significant non-linear relationships. Interaction effects were noted solely in the context of sex and hyperlipidemia. CONCLUSIONS A higher OBS was significantly associated with a slower aging process, as measured by lower PhenoAgeAccel. These findings underscore the importance of OBS as a biomarker in the study of aging and point to sex and hyperlipidemia as variables that may affect this association. Additional research is required to confirm these results and to investigate the biological underpinnings of this relationship.
Collapse
Affiliation(s)
- Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Yulin Shen
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Chaoyi Qu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Peng Huang
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xue Geng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | | | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Qiangman Wei
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Shijie Liu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
34
|
Wang X, Hu M, Li M, Huan F, Gao R, Wang J. Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115892. [PMID: 38157798 DOI: 10.1016/j.ecoenv.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the early life stages of zebrafish larvae. It revealed that the 96-hour post-fertilization (hpf) median lethal concentration (LC50) value of 3,6-DBCZ in zebrafish larvae was determined to be 0.7988 mg/L. Besides, 3,6-DBCZ reduced survival rates at concentrations ≥ 1 mg/L and decreased hatching rates at ≥ 0.25 mg/L at 48 hpf. In behavior tests, it inhibited locomotor activities and reduced the frequency of recorded acceleration states in response to optesthesia (a sudden bright light stimulus) at concentrations ≥ 160 μg/L. Meanwhile, 3,6-DBCZ exposure decreased the frequency of recorded acceleration states in the startle response (tapping mode) at concentrations ≥ 6.4 μg/L. Pathologically, with the transgenic zebrafish model (hb9-eGFP), we observed a strikingly decreased axon length and number in motor neurons after 3,6-DBCZ treatment, which may be ascribed to the activation of the AhR signaling pathway, as evidenced by the molecular docking analysis and Microscale thermophoresis (MST) assay suggested that 3,6-DBCZ binding to AhR-ARNT2 compound proteins. Through interaction with AhR-ARNT, a striking reduction of the anti-oxidative stress (sod1/2, nqo1, nrf2) and neurodevelopment-related genes (elavl3, gfap, mbp, syn2a) were observed after 3,6-DBCZ challenge, accompanied by a marked increased inflammatory genes (TNFβ, IL1β, IL6). Collectively, our findings reveal a previously unrecognized adverse effect of 3,6-DBCZ on zebrafish neurodevelopment and locomotor behaviors, potentially mediated through the activation of the AhR pathway. Furthermore, it provides direct evidence for the toxic concentrations of 3,6-DBCZ and the potential target signaling in zebrafish larvae, which may be beneficial for the risk assessment of the aquatic ecosystems.
Collapse
Affiliation(s)
- Xi Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Muhan Li
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Fei Huan
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Luo Z, Zhou W, Jiang Y, Minakata D, Spinney R, Dionysiou DD, Liu J, Xiao R. Bimolecular versus Trimolecular Reaction Pathways for H 2O 2 with Hypochlorous Species and Implications for Wastewater Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:847-858. [PMID: 38153291 DOI: 10.1021/acs.est.3c06375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The benchmark advanced oxidation technology (AOT) that uses UV/H2O2 integrated with hypochlorous species exhibits great potential in removing micropollutants and enhancing wastewater treatability for reclamation purposes. Although efforts have been made to study the reactions of H2O2 with hypochlorous species, there exist great discrepancies in the order of reaction kinetics, the rate constants, and the molecule-level mechanisms. This results in an excessive use of hypochlorous reagents and system underperformance during treatment processes. Herein, the titled reaction was investigated systematically through complementary experimental and theoretical approaches. Stopped-flow spectroscopic measurements revealed a combination of bi- and trimolecular reaction kinetics. The bimolecular pathway dominates at low H2O2 concentrations, while the trimolecular pathway dominates at high H2O2 concentrations. Both reactions were simulated using direct dynamics trajectories, and the pathways identified in the trajectories were further validated by high-level quantum chemistry calculations. The theoretical results not only supported the spectroscopic data but also elucidated the molecule-level mechanisms and helped to address the origin of the discrepancies. In addition, the impact of the environmental matrix was evaluated by using two waters with discrete characteristics, namely municipal wastewater and ammonium-rich wastewater. Municipal wastewater had a negligible matrix effect on the reaction kinetics of H2O2 and the hypochlorous species, making it a highly suitable candidate for this integration technique. The obtained in-depth reaction mechanistic insights will enable the development of a viable and economical technology for safe water reuse.
Collapse
Affiliation(s)
- Zonghao Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Queens, New York 11367, United States
| | - Ying Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Queens, New York 11367, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
36
|
Mertens RT, Kim JH, Ofori S, Olelewe C, Kamitsuka PJ, Kwakye GF, Awuah SG. A gold-based inhibitor of oxidative phosphorylation is effective against triple negative breast cancer. Biomed Pharmacother 2024; 170:116010. [PMID: 38128183 PMCID: PMC11254167 DOI: 10.1016/j.biopha.2023.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with metabolic heterogeneity and poor prognosis with limited treatment options. New treatment paradigms for TNBC remains an unmet need. Thus, therapeutics that target metabolism are particularly attractive approaches. We previously designed organometallic Au(III) compounds capable of modulating mitochondrial respiration by ligand tuning with high anticancer potency in vitro and in vivo. Here, we show that an efficacious Au(III) dithiocarbamate (AuDTC) compound induce mitochondrial dysfunction and oxidative damage in cancer cells. Efficacy of AuDTC in TNBC mouse models harboring mitochondrial oxidative phosphorylation (OXPHOS) dependence and metabolic heterogeneity establishes its therapeutic potential following systemic delivery. This provides evidence that AuDTC is an effective modulator of mitochondrial respiration worthy of clinical development in the context of TNBC. ONE SENTENCE SUMMARY: Metabolic-targeting of triple-negative breast cancer by gold anticancer agent may provide efficacious therapy.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States
| | - Jong Hyun Kim
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA
| | - Paul J Kamitsuka
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States
| | - Gunnar F Kwakye
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA.
| |
Collapse
|
37
|
Ghasemzadeh Rahbardar M, Eisvand F, Rameshrad M, Razavi BM, Tabatabaee Yazdi A, Hosseinzadeh H. Carnosic acid mitigates doxorubicin-induced cardiac toxicity: Evidence from animal and cell model investigations. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:425-438. [PMID: 38419896 PMCID: PMC10897553 DOI: 10.22038/ijbms.2023.71508.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/01/2023] [Indexed: 03/02/2024]
Abstract
Objectives Utilization of doxorubicin (DOX) as a chemotherapy medication is limited due to its cardiotoxic effects. Carnosic acid exerts antioxidant, anti-inflammatory, besides cytoprotective effects. The objective of this study was to investigate the ability of carnosic acid to protect rat hearts and the MCF7 cell line against cardiotoxicity induced by DOX. Materials and Methods The study involved the classification of male Wistar rats into seven groups: 1) Control 2) DOX (2 mg/kg, every 48h, IP, 12d), 3-5) Carnosic acid (10, 20, 40 mg/kg/day, IP, 16d)+ DOX, 6) Vitamin E (200 mg/kg, every 48h, IP, 16d)+ DOX 7) Carnosic acid (40 mg/kg/day, IP, 16d). Finally, cardiac histopathological alterations, ECG factors, carotid blood pressure, left ventricular function, heart-to-body weight ratio, oxidative (MDA, GSH), inflammatory (IL-1β, TNF-α), plus apoptosis (caspase 3, 8, 9, Bcl-2, Bax) markers were evaluated. DOX toxicity and carnosic acid ameliorative effect were evaluated on MCF7 cells using the MTT assay. Results DOX augmented the QRS duration, QA, RRI, STI, and heart-to-body weight ratio, and reduced HR, LVDP, Min dP/dt, Max dP/dt, blood pressure, boosted MDA, TNF-α, IL1-β, caspase 3,8,9, Bax/Bcl-2 ratio, decreased GSH content, caused fibrosis, necrosis, and cytoplasmic vacuolization in cardiac tissue but carnosic acid administration reduced the toxic effects of DOX. The cytotoxic effects of DOX were not affected by carnosic acid at concentrations of 5 and 10 μM. Conclusion Carnosic acid as an anti-inflammatory and antioxidant substance is effective in reducing DOX-induced damage by enhancing antioxidant defense and modifying inflammatory signal pathway activity and can be used as an adjunct in treating DOX cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Tabatabaee Yazdi
- Ghaem Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Salimi A, Khezri S, Azizian S, Kamrani V, Amir Jahadi N, Shahedi M. Evaluation of in vitro effects of ifosfamide drug on mitochondrial functions using isolated mitochondria obtained from vital organs. J Biochem Mol Toxicol 2024; 38:e23570. [PMID: 37929796 DOI: 10.1002/jbt.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as, brain, heart, kidney, and liver. Ifosfamide (IFO) as an anticancer drug, is associated with increased risk of neurotoxicity, cardiotoxicity nephrotoxicity, hepatotoxicity, and hemorrhagic cystitis. The aim of this study was to evaluate the direct effect of IFO on isolated mitochondria obtained from the rat brain, heart, kidney, and liver. Mitochondria were isolated with mechanical lysis and differential centrifugation from different organs and treated with various concentrations of IFO. Using biochemical and flowcytometry assays, we evaluated mitochondrial succinate dehydrogenase (SDH) activity, mitochondrial swelling, lipid peroxidation, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP). Our data showed that IFO did not cause deleterious alterations in mitochondrial functions, mitochondrial swelling, lipid peroxidation ROS formation, and MMP collapse in mitochondria isolated from brain, heart, kidney, and liver. Altogether, the data showed that IFO is not directly toxic in mitochondria isolated from brain, heart, kidney, and liver. This study proved that mitochondria alone does not play the main role in the toxicity of IFO, and suggests to reduce the toxicity of this drug, other pathways resulting in the production of toxic metabolites should be considered.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Kamrani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Amir Jahadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Shahedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
39
|
Hassan HA, Ahmed HS, Hassan DF. Free radicals and oxidative stress: Mechanisms and therapeutic targets. Hum Antibodies 2024; 32:151-167. [PMID: 39031349 DOI: 10.3233/hab-240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Free radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body's cells. OBJECTIVE The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases. METHODS Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obtained by searching electronic databases like PubMed, Web of Science, and Science Direct, with articles published between 1987 and 2023 being included in this review. RESULTS Free radicals exhibit a dual role in living systems. They are toxic byproducts of aerobic metabolism that lead to oxidative injury and tissue disorders and act as signals to activate appropriate stress responses. Endogenous and exogenous sources of reactive oxygen species are discussed in this review. Oxidative stress is a component of numerous diseases, including diabetes mellitus, atherosclerosis, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and cancer. Although various small molecules assessed as antioxidants have shown therapeutic prospects in preclinical studies, clinical trial outcomes have been inadequate. Understanding the mechanisms through which antioxidants act, where, and when they are active may reveal a rational approach that leads to more tremendous pharmacological success. This review studies the associations between oxidative stress, redox signaling, and disease, the mechanisms through which oxidative stress can donate to pathology, the antioxidant defenses, the limits of their effectiveness, and antioxidant defenses that can be increased through physiological signaling, dietary constituents, and probable pharmaceutical interference. Prospective clinical applications of enzyme mimics and current progress in metal- and non-metal-based materials with enzyme-like activities and protection against chronic diseases have been discussed. CONCLUSION This review discussed oxidative stress as one of the main causes of illnesses, as well as antioxidant systems and their defense mechanisms that can be useful in inhibiting these diseases. Thus, the positive and deleterious effects of antioxidant molecules used to lessen oxidative stress in numerous human diseases are discussed. The optimal level of vitamins and minerals is the amount that achieves the best feed benefit, best growth rate, and health, including immune efficiency, and provides sufficient amounts to the body.
Collapse
|
40
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
41
|
Ribas LE, Gasser FB, Baravalle ME, Renna MS, Perello A, Savino GH, Ortega HH, Van de Velde F, Hein GJ. Cytotoxic, antioxidant, and cytoprotective properties of polyphenol-enriched extracts from pecan nutshells in MDA-MB-231 breast cancer cells. Cell Biochem Funct 2023; 41:1442-1450. [PMID: 37933894 DOI: 10.1002/cbf.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Phenolic compounds present in plants have demonstrated several biological properties such as antioxidant, antitumor, cardioprotective, and antiproliferative. On the other hand, doxorubicin, a chemotherapeutic widely used to treat breast cancer, usually exhibits chronic cardiotoxicity associated with oxidative stress. Therefore, we aimed to study the effects of phenolic compound-enriched extract (PCEE) with doxorubicin in breast cancer. To achieve this, after an SPE-C18 -column purification process of crude extracts obtained from pecan nutshells (Carya illinoinensis), the resulting PCEE was used to evaluate the cytotoxicity and antioxidant properties against the human breast cancer cell line MDA-MB-231 and the normal-hamster ovary cell line CHO-K1. PCEE was selectively cytotoxic against both cell lines, with an IC50 value (≈26.34 mg/L) for MDA-MB-231 lower than that obtained for CHO-K1 (≈55.63 mg/L). As a cytotoxic mechanism, PCEE inhibited cell growth by G2/M cell cycle arrest in MDA-MB-231 cells. Simultaneously, the study of the antioxidant activity showed that PCEE had a cytoprotective effect, evidenced by reduced ROS production in cells with oxidative stress caused by doxorubicin. The results highlight PCEE as a potential antitumor agent, thus revaluing it as an agro-industrial residue.
Collapse
Affiliation(s)
- Lucas E Ribas
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Fátima B Gasser
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - María E Baravalle
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Maria S Renna
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Adriana Perello
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Graciela H Savino
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| | - Franco Van de Velde
- Instituto de Tecnología de los Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Gustavo J Hein
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Santa Fe, Argentina
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina
| |
Collapse
|
42
|
Nepalia A, Fernandes SE, Singh H, Rana S, Saini DK. Anti-microbial resistance and aging-A design for evolution. WIREs Mech Dis 2023; 15:e1626. [PMID: 37553220 DOI: 10.1002/wsbm.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
The emergence of resistance to anti-infective agents poses a significant threat to successfully treating infections caused by bacteria. Bacteria acquire random mutations due to exposure to environmental stresses, which may increase their fitness to other selection pressures. Interestingly, for bacteria, the frequency of anti-microbial resistance (AMR) seems to be increasing in tandem with the human lifespan. Based on evidence from previous literature, we speculate that increased levels of free radicals (Reactive Oxygen Species-ROS and Reactive Nitrosative Species-RNS), elevated inflammation, and the altered tissue microenvironment in aged individuals may drive pathogen mutagenesis. If these mutations result in the hyperactivation of efflux pumps or alteration in drug target binding sites, it could confer AMR, thus rendering antibiotic therapy ineffective while leading to the selection of novel drug-resistant variants. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Amrita Nepalia
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheryl Erica Fernandes
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, and Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
43
|
Yazla E, Cetin I, Kayadibi H. Assessing the relationship between antipsychotic drug use and prolidase enzyme activity and oxidative stress in schizophrenia patients: a case-control study. Int Clin Psychopharmacol 2023; 38:394-401. [PMID: 37490605 DOI: 10.1097/yic.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND The relationship between proline, its association with oxidative stress, and its connection to schizophrenia is a subject that has not been sufficiently investigated. OBJECTIVE The aim of this study is to evaluate the possible effects of atypical and combined (typical and atypical) antipsychotic use on serum prolidase enzyme activity (SPEA) and serum oxidative stress parameters, and to assess the relationship between SPEA and oxidative stress in patients with schizophrenia. METHODS A total of 57 patients with schizophrenia, of which 34 were using atypical (AAPG) and 23 were using combined (typical and atypical) (CAPG) antipsychotic therapy, and 28 healthy volunteers (control group) were included in this case-control study. RESULTS SPEA levels of AAPG and CAPG were significantly lower than that of control group ( P = 0.003). The oxidative stress index (OSI) value of AAPG was significantly higher than the other two groups ( P = 0.001). SPEA (<1860 U/l) and OSI (≥0.54) could discriminate schizophrenia patients with antipsychotic therapy from control groups ( P = 0.001 and P = 0.007, respectively). Lower SPEA levels were associated with antipsychotic use ( P = 0.007). CONCLUSION The SPEA values of patients with schizophrenia on antipsychotics were significantly lower compared to controls. OSI values were significantly higher in atypical antipsychotic recipients compared to those on combined antipsychotics and healthy controls.
Collapse
Affiliation(s)
- Ece Yazla
- Department of Psychiatry, Hitit University Faculty of Medicine
| | - Ihsan Cetin
- Department of Medical Biochemistry, Hitit University Faculty of Medicine, Corum
| | - Huseyin Kayadibi
- Department of Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
44
|
Elblehi SS, Hafez MH, El-Far AH. Panax ginseng ameliorates hepatorenal oxidative alterations induced by commercially used cypermethrin in male rats: experimental and molecular docking approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109702-109723. [PMID: 37776425 PMCID: PMC10622388 DOI: 10.1007/s11356-023-29935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid utilized as an insecticide in agriculture and various pest eradication programs. However, it induces numerous health hazards for animals and humans. Therefore, the current study used Panax ginseng root extract (ginseng) to reduce the hepatorenal damage caused by commercially used CYP. Thirty-two male Wistar albino rats were distributed into control, ginseng (300 mg/kg B.W/day), CYP (4.67 mg/kg B.W.), and Ginseng+CYP (rats received both CYP and ginseng). All treatments were administered orally for 30 consecutive days. Cypermethrin induced harmful effects on hepatic and renal tissues through a substantial decline in body weight in addition to a considerable increase in liver enzymes, functional renal markers, and cholesterol. Also, CYP significantly decreased acetylcholinesterase (AChE) activity and increased pro-inflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)). Moreover, a marked increase in malondialdehyde level with a significant drop in reduced glutathione level and total superoxide dismutase (T-SOD) and catalase (CAT) activities was reported in the CYP group in kidney and liver tissues. Additionally, CYP exhibited affinities to bind and inhibit AChE and antioxidant enzymes (T-SOD and CAT) in rats following the molecular docking modeling. The apparent hepatorenal oxidative damage was linked with obvious impairments in the liver and kidney histoarchitecture, immunohistochemical staining of B cell lymphoma-2 (Bcl-2), and caspase-3 proteins. Ginseng reduced CYP's oxidative alterations by repairing the metabolic functional markers, improving antioxidant status, reducing the inflammatory response, and enhancing the molecular docking evaluation. It also ameliorated the intensity of the histopathological alterations and improved the immunohistochemical staining of Bcl-2 and caspase-3 proteins in the liver and kidney tissues. Finally, concomitant oral administration of ginseng mitigated CYP-prompted hepatorenal damage through its antioxidant, anti-inflammatory, and anti-apoptotic potentials.
Collapse
Affiliation(s)
- Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Mona H Hafez
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
45
|
Shaikh S, Younis M, Yingying S, Tanziela T, Yuan L. Bleomycin loaded exosomes enhanced antitumor therapeutic efficacy and reduced toxicity. Life Sci 2023; 330:121977. [PMID: 37499934 DOI: 10.1016/j.lfs.2023.121977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapeutic agent with potent antitumor activity against the tumor. However, lung fibrosis is the main drawback that limits BLM use. Tumor targeted, safe, efficient and natural delivery of BLM is important to increase the effectiveness and reduce the toxic side effects. Although tumor derived Exosomes (Exo), provide a potential vehicle for in vivo drug delivery due to their cell tropism. This study primarily focuses on generating a natural delivery platform for Exo loaded with BLM and testing its therapeutic efficacy against cancer. METHODS Exosomes were isolated from cancer cells and incubated with BLM. Exo were characterized by transmission electron microscopy, western blot analysis and nanoparticle tracking analysis. We performed in vitro and in vivo analyses to evaluate the effect of Exo-BLM. RESULTS Exosomes loaded with BLM are highly cancer targeting and cause the cytotoxicity of tumor cells by ROS. The fluorescence images showed that Exo-BLM accumulated in cancer cells. The results revealed that Exo-BLM induces tumor cell apoptosis by the caspase pathway. In vivo, the treatment of Exo-BLM showed targeted ability and enhanced the antitumor activity. CONCLUSION This study provides an avenue for specific BLM therapeutics with minimal side effects.
Collapse
Affiliation(s)
- Sana Shaikh
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Muhammad Younis
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center for Inflammation, Immunity & Infection, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Shao Yingying
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Tanziela Tanziela
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
46
|
Myden A, Stalford SA, Fowkes A, White E, Hirose A, Yamada T. Enhancing developmental and reproductive toxicity knowledge: A new AOP stemming from glutathione depletion. Curr Res Toxicol 2023; 5:100124. [PMID: 37808440 PMCID: PMC10556594 DOI: 10.1016/j.crtox.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Integrated approaches to testing and assessments (IATAs) have been proposed as a method to organise new approach methodologies in order to replace traditional animal testing for chemical safety assessments. To capture the mechanistic aspects of toxicity assessments, IATAs can be framed around the adverse outcome pathway (AOP) concept. To utilise AOPs fully in this context, a sufficient number of pathways need to be present to develop fit for purpose IATAs. In silico approaches can support IATA through the provision of predictive models and also through data integration to derive conclusions using a weight-of-evidence approach. To examine the maturity of a developmental and reproductive toxicity (DART) AOP network derived from the literature, an assessment of its coverage was performed against a novel toxicity dataset. A dataset of diverse compounds, with data from studies performed according to OECD test guidelines TG-421 and TG-422, was curated to test the performance of an in silico model based on the AOP network - allowing for the identification of knowledge gaps within the network. One such gap in the knowledge was filled through the development of an AOP stemming from the molecular initiating event 'glutathione reaction with an electrophile' leading to male fertility toxicity. The creation of the AOP provided the mechanistic rationale for the curation of pre-existing structural alerts to relevant key events. Integrating this new knowledge and associated alerts into the DART AOP network will improve its coverage of DART-relevant chemical space. In addition, broadening the coverage of AOPs for a particular regulatory endpoint may facilitate the development of, and confidence in, robust IATAs.
Collapse
Affiliation(s)
- Alun Myden
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Susanne A. Stalford
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Adrian Fowkes
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Emma White
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
47
|
Yoon K, Jung S, Ryu J, Park HJ, Oh HK, Kook MS. Redox-Sensitive Delivery of Doxorubicin from Nanoparticles of Poly(ethylene glycol)-Chitosan Copolymer for Treatment of Drug-Resistant Oral Cancer Cells. Int J Mol Sci 2023; 24:13704. [PMID: 37762003 PMCID: PMC10531032 DOI: 10.3390/ijms241813704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Reactive oxygen species (ROS)-sensitive polymer nanoparticles were synthesized for tumor targeting of an anticancer drug, doxorubicin (DOX). For this purpose, chitosan-methoxy poly(ethylene glycol) (mPEG) (ChitoPEG)-graft copolymer was synthesized and then DOX was conjugated to the backbone of chitosan using a thioketal linker. Subsequently, the chemical structure of the DOX-conjugated ChitoPEG copolymer (ChitoPEGthDOX) was confirmed via 1H nuclear magnetic resonance (NMR) spectra. Nanoparticles of the ChitoPEGthDOX conjugates have spherical shapes and a size of approximately 100 nm. Transmission electron microscopy (TEM) has shown that ChitoPEGthDOX nanoparticles disintegrate in the presence of hydrogen peroxide and the particle size distribution also changes from a monomodal/narrow distribution pattern to a multi-modal/wide distribution pattern. Furthermore, DOX is released faster in the presence of hydrogen peroxide. These results indicated that ChitoPEGthDOX nanoparticles have ROS sensitivity. The anticancer activity of the nanoparticles was evaluated using AT84 oral squamous carcinoma cells. Moreover, DOX-resistant AT84 cells were prepared in vitro. DOX and its nanoparticles showed dose-dependent cytotoxicity in both DOX-sensitive and DOX-resistant AT84 cells in vitro. However, DOX itself showed reduced cytotoxicity against DOX-resistant AT84 cells, while the nanoparticles showed almost similar cytotoxicity to DOX-sensitive and DOX-resistant AT84 cells. This result may be due to the inhibition of intracellular delivery of free DOX, while nanoparticles were efficiently internalized in DOX-resistant cells. The in vivo study of a DOX-resistant AT84 cell-bearing tumor xenograft model showed that nanoparticles have higher antitumor efficacy than those found in free DOX treatment. These results may be related to the efficient accumulation of nanoparticles in the tumor tissue, i.e., the fluorescence intensity in the tumor tissue was stronger than that of any other organs. Our findings suggest that ChitoPEGthDOX nanoparticles may be a promising candidate for ROS-sensitive anticancer delivery against DOX-resistant oral cancer cells.
Collapse
Affiliation(s)
- Kaengwon Yoon
- El-Dental Clinic, Seomun Daero Street 625, Namgu, Gwangju 61737, Republic of Korea;
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Seunggon Jung
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Jaeyoung Ryu
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hong-Ju Park
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hee-Kyun Oh
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| |
Collapse
|
48
|
Yang H, Ulge UY, Quijano-Rubio A, Bernstein ZJ, Maestas DR, Chun JH, Wang W, Lin JX, Jude KM, Singh S, Orcutt-Jahns BT, Li P, Mou J, Chung L, Kuo YH, Ali YH, Meyer AS, Grayson WL, Heller NM, Garcia KC, Leonard WJ, Silva DA, Elisseeff JH, Baker D, Spangler JB. Design of cell-type-specific hyperstable IL-4 mimetics via modular de novo scaffolds. Nat Chem Biol 2023; 19:1127-1137. [PMID: 37024727 PMCID: PMC10697138 DOI: 10.1038/s41589-023-01313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Umut Y Ulge
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Srujan Singh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jody Mou
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmin H Ali
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Bioinformatics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Warren L Grayson
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Pham C, Thomson S, Chin ST, Vuillermin P, O'Hely M, Burgner D, Tanner S, Saffery R, Mansell T, Bong S, Holmes E, Sly PD, Gray N, Ponsonby AL. Maternal oxidative stress during pregnancy associated with emotional and behavioural problems in early childhood: implications for foetal programming. Mol Psychiatry 2023; 28:3760-3768. [PMID: 37845496 PMCID: PMC10730421 DOI: 10.1038/s41380-023-02284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Childhood mental disorders, including emotional and behavioural problems (EBP) are increasingly prevalent. Higher maternal oxidative stress (OS) during pregnancy (matOSpreg) is linked to offspring mental disorders. Environmental factors contribute to matOSpreg. However, the role of matOSpreg in childhood EBP is unclear. We investigated the associations between (i) matOSpreg and offspring EBP; (ii) social and prenatal environmental factors and matOSpreg; and (iii) social and prenatal factors and childhood EBP and evaluated whether matOSpreg mediated these associations. Maternal urinary OS biomarkers, 8-hydroxyguanosine (8-OHGua; an oxidative RNA damage marker) and 8-hydroxy-2'-deoxyguanosine (8-OHdG; an oxidative DNA damage marker), at 36 weeks of pregnancy were quantified by liquid chromatography-mass spectrometry in a population-derived birth cohort, Barwon Infant Study (n = 1074 mother-infant pairs). Social and prenatal environmental factors were collected by mother-reported questionnaires. Offspring total EBP was measured by Child Behavior Checklist Total Problems T-scores at age two (n = 675) and Strengths and Difficulties Questionnaire Total Difficulties score at age four (n = 791). Prospective associations were examined by multivariable regression analyses adjusted for covariates. Mediation effects were evaluated using counterfactual-based mediation analysis. Higher maternal urinary 8-OHGua at 36 weeks (mat8-OHGua36w) was associated with greater offspring total EBP at age four (β = 0.38, 95% CI (0.07, 0.69), P = 0.02) and age two (β = 0.62, 95% CI (-0.06, 1.30), P = 0.07). Weaker evidence of association was detected for 8-OHdG. Five early-life factors were associated with both mat8-OHGua36w and childhood EBP (P-range < 0.001-0.05), including lower maternal education, socioeconomic disadvantage and prenatal tobacco smoking. These risk factor-childhood EBP associations were partly mediated by higher mat8-OHGua36w (P-range = 0.01-0.05). Higher matOSpreg, particularly oxidant RNA damage, is associated with later offspring EBP. Effects of some social and prenatal lifestyle factors on childhood EBP were partly mediated by matOSpreg. Future studies are warranted to further elucidate the role of early-life oxidant damage in childhood EBP.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah Thomson
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sung-Tong Chin
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Barwon Health, Geelong, VIC, 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel Tanner
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sze Bong
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Child Health Research Centre, University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.
- Florey Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
50
|
Świerczewska M, Sterzyńska K, Ruciński M, Andrzejewska M, Nowicki M, Januchowski R. The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids. Biomed Pharmacother 2023; 165:115152. [PMID: 37442067 DOI: 10.1016/j.biopha.2023.115152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer is the most common type of gynecologic cancer. One of the leading causes of high mortality is chemoresistance, developed primarily or during treatment. Different mechanisms of drug resistance appear at the cellular and cancer tissue organization levels. We examined the differences in response to the cytotoxic drugs CIS, MTX, DOX, VIN, PAC, and TOP using 2D (two-dimensional) and 3D (three-dimensional) culture methods. We tested the drug-sensitive ovarian cancer cell line W1 and established resistant cell lines to appropriate cytotoxic drugs. The following qualitative and quantitative methods were used to assess: 1) morphology - inverted microscope and hematoxylin & eosin staining; 2) viability - MTT assay; 3) gene expression - a quantitative polymerase chain reaction; 4) identification of proteins - immunohistochemistry, and immunofluorescence. Our results indicate that the drug-sensitive and drug-resistant cells cultured in 3D conditions exhibit stronger resistance than the cells cultured in 2D conditions. A traditional 2D model shows that drug resistance of cancer cells is caused mainly by changes in the expression of genes encoding ATP-binding cassette transporter proteins, components of the extracellular matrix, "new" established genes related to drug resistance in ovarian cancer cell lines, and universal marker of cancer stem cells. Whereas in a 3D model, the drug resistance in spheroids can be related to other mechanisms such as the structure of the spheroid (dense or loose), the cell type (necrotic, quiescent, proliferating cells), drug concentrations or drug diffusion into the dense cellular/ECM structure.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland.
| |
Collapse
|