1
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
2
|
Tran T, Mach J, Gemikonakli G, Wu H, Allore H, Howlett SE, Little CB, Hilmer SN. Diurnal effects of polypharmacy with high drug burden index on physical activities over 23 h differ with age and sex. Sci Rep 2022; 12:2168. [PMID: 35140291 PMCID: PMC8828819 DOI: 10.1038/s41598-022-06039-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/18/2023] Open
Abstract
Aging, polypharmacy (concurrent use of ≥ 5 medications), and functional impairment are global healthcare challenges. However, knowledge of the age/sex-specific effects of polypharmacy is limited, particularly on daily physical activities. Using continuous monitoring, we demonstrated how polypharmacy with high Drug Burden Index (DBI-cumulative anticholinergic/sedative exposure) affected behaviors over 23 h in male/female, young/old mice. For comparison, we also evaluated how different drug regimens (polypharmacy/monotherapy) influenced activities in young mice. We found that after 4 weeks of treatment, high DBI (HDBI) polypharmacy decreased exploration (reduced mean gait speed and climbing) during the habituation period, but increased it during other periods, particularly in old mice during the transition to inactivity. After HDBI polypharmacy, mean gait speed consistently decreased throughout the experiment. Some behavioral declines after HDBI were more marked in females than males, indicating treatment × sex interactions. Metoprolol and simvastatin monotherapies increased activities in young mice, compared to control/polypharmacy. These findings highlight that in mice, some polypharmacy-associated behavioral changes are greater in old age and females. The observed diurnal behavioral changes are analogous to drug-induced delirium and sundowning seen in older adults. Future mechanistic investigations are needed to further inform considerations of age, sex, and polypharmacy to optimize quality use of medicines.
Collapse
Affiliation(s)
- Trang Tran
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia.
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Harry Wu
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| | - Heather Allore
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Susan E Howlett
- Department of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, B3H 2E1, Canada
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, 2065, Australia
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|
3
|
Maier F, Spottke A, Bach JP, Bartels C, Buerger K, Dodel R, Fellgiebel A, Fliessbach K, Frölich L, Hausner L, Hellmich M, Klöppel S, Klostermann A, Kornhuber J, Laske C, Peters O, Priller J, Richter-Schmidinger T, Schneider A, Shah-Hosseini K, Teipel S, von Arnim CAF, Wiltfang J, Jessen F. Bupropion for the Treatment of Apathy in Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e206027. [PMID: 32463470 PMCID: PMC7256670 DOI: 10.1001/jamanetworkopen.2020.6027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Apathy is a frequent neuropsychiatric symptom in dementia of Alzheimer type and negatively affects the disease course and patients' and caregivers' quality of life. Effective treatment options are needed. OBJECTIVE To examine the efficacy and safety of the dopamine and noradrenaline reuptake inhibitor bupropion in the treatment of apathy in patients with dementia of Alzheimer type. DESIGN, SETTING, AND PARTICIPANTS This 12-week, multicenter, double-blind, placebo-controlled, randomized clinical trial was conducted in a psychiatric and neurological outpatient setting between July 2010 and July 2014 in Germany. Patients with mild-to-moderate dementia of Alzheimer type and clinically relevant apathy were included. Patients with additional clinically relevant depressed mood were excluded. Data analyses were performed between August 2018 and August 2019. INTERVENTIONS Patients received either bupropion or placebo (150 mg for 4 weeks plus 300 mg for 8 weeks). In case of intolerability of 300 mg, patients continued to receive 150 mg throughout the study. MAIN OUTCOMES AND MEASURES Change on the Apathy Evaluation Scale-Clinician Version (AES-C) (score range, 18-72 points) between baseline and week 12 was the primary outcome parameter. Secondary outcome parameters included measures of neuropsychiatric symptoms, cognition, activities of daily living, and quality of life. Outcome measures were assessed at baseline and at 4, 8, and 12 weeks. RESULTS A total of 108 patients (mean [SD] age, 74.8 [5.9] years; 67 men [62%]) were included in the intention-to-treat analysis, with 54 randomized to receive bupropion and 54 randomized to receive placebo. The baseline AES-C score was comparable between the bupropion group and the placebo group (mean [SD], 52.2 [8.7] vs 50.4 [8.2]). After controlling for the baseline AES-C score, site, and comedication with donepezil or galantamine, the mean change in the AES-C score between the bupropion and placebo groups was not statistically significant (mean change, 2.22; 95% CI, -0.47 to 4.91; P = .11). Results on secondary outcomes showed statistically significant differences between bupropion and placebo in terms of total neuropsychiatric symptoms (mean change, 5.52; 95% CI, 2.00 to 9.04; P = .003) and health-related quality of life (uncorrected for multiple comparisons; mean change, -1.66; 95% CI, -3.01 to -0.31; P = .02) with greater improvement in the placebo group. No statistically significant changes between groups were found for activities of daily living (mean change, -2.92; 95% CI, -5.89 to 0.06; P = .05) and cognition (mean change, -0.27; 95% CI, -3.26 to 2.73; P = .86). The numbers of adverse events (bupropion group, 39 patients [72.2%]; placebo group, 33 patients [61.1%]) and serious adverse events (bupropion group, 5 patients [9.3%]; placebo group, 2 patients [3.7%]) were comparable between groups. CONCLUSIONS AND RELEVANCE Although it is safe, bupropion was not superior to placebo for the treatment of apathy in patients with dementia of Alzheimer type in the absence of clinically relevant depressed mood. TRIAL REGISTRATION EU Clinical Trials Register Identifier: 2007-005352-17.
Collapse
Affiliation(s)
- Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Jan-Philipp Bach
- Department of Geriatric Medicine, University Hospital Essen, Essen, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Richard Dodel
- Department of Geriatric Medicine, University Hospital Essen, Essen, Germany
| | | | | | - Lutz Frölich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
| | - Arne Klostermann
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité Berlin, Berlin, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Neuropsychiatry, Berlin Institute of Health, Charité Berlin, Berlin, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Klinik für Neurodegenerative Erkrankungen und Gerontopsychiatrie, University of Bonn, Bonn, Germany
| | - Kija Shah-Hosseini
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases, Rostock, Germany
- Department of Psychosomatic Medicine, University Hospital of Rostock, Rostock, Germany
| | | | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
- German Center for Neurodegenerative Diseases, Goettingen, Germany
| | - Frank Jessen
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Carrasco MC, Vidal J, Redolat R. Bupropion induced changes in exploratory and anxiety-like behaviour in NMRI male mice depends on the age. Behav Processes 2013; 98:117-24. [PMID: 23727544 DOI: 10.1016/j.beproc.2013.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/08/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022]
Abstract
The aim of this study was to assess the effects of the antidepressant bupropion on anxiety and novelty-seeking in adolescent mice of different ages and adults. Behavioural differences between early adolescent, late adolescent and adult NMRI mice were measured both in the elevated plus-maze and the hole-board tasks following acute administration of bupropion (5, 10, 15, 20mg/kg) or saline. In the plus maze test, early and late adolescent mice treated with bupropion (10, 15mg/kg, respectively) had lower percentages of entries in the open-arms compared to their vehicle controls. Adult mice treated with bupropion did not differ from their vehicle controls. These results suggest that the effect of this drug on anxiety-like behaviour in mice depends on the age, showing adolescents an anxiogenic-like profile. In the hole-board, adolescents showed more elevated levels of novelty-seeking than adults, exhibiting shorter latency to the first head-dip (HD) and a higher number of HD's. Bupropion increases the latency to the first HD and decreases the number of HD's in all age-groups, indicating a decline in exploratory tendency. Findings reveal that the age can modulate the behaviour displayed by mice in both animal models, and that adolescents are more sensitive to bupropion's anxiogenic effects.
Collapse
Affiliation(s)
- M Carmen Carrasco
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Blasco Ibañez, 21, Valencia 46010, Spain.
| | | | | |
Collapse
|