1
|
Bergenin has neuroprotective effects in mice with ischemic stroke through antioxidative stress and anti-inflammation via regulating Sirt1/FOXO3a/NF-κB signaling. Neuroreport 2022; 33:549-560. [DOI: 10.1097/wnr.0000000000001789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Kim H, Jeon W, Hong J, Lee J, Yeo C, Lee Y, Baek S, Ha I. Gongjin-Dan Enhances Neurite Outgrowth of Cortical Neuron by Ameliorating H 2O 2-Induced Oxidative Damage via Sirtuin1 Signaling Pathway. Nutrients 2021; 13:4290. [PMID: 34959841 PMCID: PMC8707945 DOI: 10.3390/nu13124290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Gongjin-dan (GJD) is a multiherbal formula produced from 10 medicinal herbs and has been traditonally used as an oriental medicine to treat cardiovascular diseases, alcoholic hepatitis, mild dementia, and anemia. Additionally, increasing evidence suggests that GJD exerts neuroprotective effects by suppressing inflammation and oxidative stress-induced events to prevent neurological diseases. However, the mechanism by which GJD prevents oxidative stress-induced neuronal injury in a mature neuron remains unknown. Here, we examined the preventive effect and mechanism of GJD on primary cortical neurons exposed to hydrogen peroxide (H2O2). In the neuroprotection signaling pathway, Sirtuin1 is involved in neuroprotective action as a therapeutic target for neurological diseases. After pre-treatment with GJD at three concentrations (10, 25, and 50 µg/mL) and stimulation by H2O2 (30 µM) for 24 h, the influence of GJD on Sirtuin1 activation was assessed using immunocytochemistry, real-time PCR, western blotting, and flow cytometry. GJD effectively ameliorated H2O2-induced neuronal death against oxidative damage through Sirtuin1 activation. In addition, GJD-induced Sirtuin1 activation accelerated elongation of new axons and formation of synapses via increased expression of nerve growth factor and brain-derived neurotrophic factor, as well as regeneration-related genes. Thus, GJD shows potential for preventing neurological diseases via Sirtuin1 activation.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Wanjin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Jinyoung Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Yoonjae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Seungho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Korea;
| | - Inhyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| |
Collapse
|
3
|
Lee JH, Jeong JH, Jeong YG, Kim DK, Lee NS, Na CS, Doh ES, Han SY. Platycarya strobilacea leaf extract protects mice brain with focal cerebral ischemia by antioxidative property. Anat Cell Biol 2020; 52:486-497. [PMID: 31949989 PMCID: PMC6952690 DOI: 10.5115/acb.19.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 11/27/2022] Open
Abstract
The leaf extract of Platycarya strobilacea (PSL) has long been recognized as possessing various health-promoting activities. However, information on its possible protective effects against ischemic stroke is currently lacking. Here, using a mouse model of focal cerebral ischemia (fCI), we studied the protective potential of an oral supplement of PSL. Mice were randomly divided into four groups: SO, a group subjected to a sham-operation; VEH, pretreated with distilled water and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R); PSL-L and PSL-H, pretreated with low (20 mg/kg) and high (100 mg/kg) doses of PSL, respectively, and subjected to the MCAO/R procedure. PSL was administered via an oral route daily for 8 days prior to surgery. We then measured the infarct volumes and sensorimotor deficits and studied the underlying antioxidant mechanisms by quantifying apoptosis, reactive oxygen species (ROS) generation, oxidative damages, and antioxidant enzymes in the ischemic cortex. The results showed a marked attenuation in infarct volume and sensorimotor deficits in both the PSL-L and PSL-H groups when compared with VEH. The terminal deoxynucleotidyl transferase dUTP nick end labeling and the immunohistochemical detection of the cleaved caspase-3 revealed that PSL could reduce cellular apoptosis in the ischemic lesion in a dose-dependent manner. The dihydroethidium-fluorescence, 4-hydroxynonenal, and 8-hydroxyl-2'-deoxyguanosine immunoreactivities in the ischemic lesion were markedly attenuated in the PSL-L group compared with the VEH group, indicating that PSL could attenuate ROS generation and the associated oxidative damage in the ischemic cortex. Finally, western blot results indicated that PSL can upregulate levels of heme oxygenase-1 (HO-1), an antioxidant enzyme, in the lesion area. Together, these results suggest that PSL can exert protective effects against fCI, and the mechanism may involve HO-1 upregulation.
Collapse
Affiliation(s)
- Ji Hye Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Ji Heun Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Young-Gil Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Do-Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Nam-Seob Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | | | - Eun Soo Doh
- Department of Herbal Health and Pharmacy, Joongbu University College of Health and Welfare, Geumsan, Korea
| | - Seung Yun Han
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
4
|
Delayed treatment of α5 GABAA receptor inverse agonist improves functional recovery by enhancing neurogenesis after cerebral ischemia-reperfusion injury in rat MCAO model. Sci Rep 2019; 9:2287. [PMID: 30783142 PMCID: PMC6381084 DOI: 10.1038/s41598-019-38750-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 11/08/2022] Open
Abstract
Development of effective therapeutics and treatment strategy to promote recovery after cerebral ischemia-reperfusion injury necessitates further understandings of the complex pathophysiology of ischemic stroke. Given that α5-GABAAR inhibition has been shown to be involved in functional recovery after stroke, the present study was designed to evaluate the effects of treatment timing of α5 GABAAR inhibition on post-middle cerebral artery occlusion (MCAO) functional recovery. To this end, we examined the effects of L655,708 (α5 GABAAR inverse agonist) treatment at 3 or 7 days post-ischemia on apoptosis and neurogenesis in the peri-infarct region, brain infarction size, as well as modified neurological severity score (mNSS) and rotarod test time in rats. Consistent with previous reports, we found that when the treatment of L655,708 was initiated at post-MCAO day 3, it did not alter the functional recovery in rats. However, when the treatment of L655,708 was initiated at post-MCAO day 7, it demonstrated beneficial effects on functional recovery in rats. Interestingly, this phenomenon was not associated with altered brain infarction size nor with changes in brain cell apoptosis. However, we found that delayed treatment of L655,708 at post-MCAO day 7 significantly increased neurogenesis in peri-infarct zone in rats. These results suggested that removing α5 GABAAR-mediated tonic inhibition after cerebral ischemia-reperfusion injury may be an effective therapeutic strategy for promoting functional recovery from stroke.
Collapse
|
5
|
Wu D, Guo X, Cui R, Wu M, Shang Q, Jiang H. In vivo hemodynamic visualization of berberine-induced effect on the cerebral cortex of a mouse by photoacoustic tomography. APPLIED OPTICS 2019; 58:1-8. [PMID: 30645502 DOI: 10.1364/ao.58.000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
While berberine, a traditional Oriental herbal drug commonly used for treatment of diarrhea, has recently been used to treat a number of brain disorders, such as stroke and Alzheimer's disease, berberine-induced changes in hemodynamics are largely unknown. Here, we utilize photoacoustic tomography (PAT) to study hemodynamic effects of berberine in mice. In vivo photoacoustic images are obtained in ten functional regions of a mouse brain. Cortical vascular network and dynamic changes in total hemoglobin (HbT) concentration are acquired at 532 nm. Functional atlas and statistical data are also obtained at low-dose and high-dose berberine. Our results provide compelling evidence that both low-dose and high-dose berberine can increase the HbT concentration to a varied extent in certain brain regions. This study also suggests that PAT provides a powerful tool for visualizing brain hemodynamic changes induced by drugs.
Collapse
|
6
|
Son MJ, Im HJ, Ku B, Lee JH, Jung SY, Kim YE, Lee SB, Kim JY, Son CG. An Herbal Drug, Gongjin-dan, Ameliorates Acute Fatigue Caused by Short-Term Sleep-Deprivation: A Randomized, Double-Blinded, Placebo-Controlled, Crossover Clinical Trial. Front Pharmacol 2018; 9:479. [PMID: 29867485 PMCID: PMC5958722 DOI: 10.3389/fphar.2018.00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/23/2018] [Indexed: 01/17/2023] Open
Abstract
Introduction:Gongjin-dan (GJD) is an herbal drug commonly used in Korea and China to combat fatigue, but there are only few clinical studies on its effectiveness and experimental studies on its mechanism of action, and no randomized controlled trial of GJD on the efficacy and mechanism of action has been reported. Here, we performed an exploratory study to evaluate both questions regarding GJD use in humans. Methods: A randomized, double-blinded, placebo-controlled, crossover clinical trial was conducted in the Republic of Korea. Healthy male participants were recruited and randomly allocated to groups receiving GJD-placebo or placebo-GJD in sequence. Fatigue was artificially induced by sleep deprivation for 2 nights. The primary outcome was a change in serum cortisol level; levels of biomarkers for stress hormones as well as oxidative stress and immunologic factors were also assessed, and questionnaires on fatigue and sleep quality were conducted. Results: Twelve and 11 participants were assigned to the GJD-placebo and placebo-GJD groups, respectively. Of all 23 participants, depending on crossover design, we analyzed a total of 20 participants for GJD, and 21 for placebo. An increase in serum cortisol appeared to be attenuated by GJD administration (p = 0.25), but the effect was not statistically significant; a similar pattern was observed in salivary cortisol levels (p = 0.14). Overall, GJD showed a tendency to reduce fatigue according to the Brief Fatigue Inventory (BFI, p = 0.07) and the Fatigue Severity Scale (FSS, p = 0.13) questionnaires. BFI and FSS scores in the first stage (before the crossover), however, were significantly improved (BFI, p = 0.02; FSS, p = 0.05) after GJD treatment (relative to placebo). GJD also seemed to improve sleep quality as assessed by the Leeds Sleep Evaluation Questionnaire (p = 0.06), with a significant improvement specifically in the condition "Getting To Sleep" (p = 0.02). Five participants experienced minor adverse events, but no adverse events were specific to the GJD administration period. Conclusions: This trial produced the first clinical evidence that GJD might have anti-fatigue properties, especially under sleep deprivation; however, the investigation of cortisol-mediated mechanisms requires further larger-scale studies in the future. TRIAL REGISTRATION World Health Organization International Clinical Trials Registry Platform KCT0001681 (http://apps.who.int/trialsearch/Trial2.aspx?TrialID=KCT0001681).
Collapse
Affiliation(s)
- Mi Ju Son
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hwi-Jin Im
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Boncho Ku
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jun-Hwan Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Korean Medicine Life Science, University of Science & Technology, Daejeon, South Korea
| | - So Young Jung
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Young-Eun Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sung Bae Lee
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Jun Young Kim
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| |
Collapse
|
7
|
Shin S, Kim J, Yu A, Seo HS, Shin MR, Cho JH, Yi G, Hong SU, Lee E. A Herbal Medicine, Gongjindan, in Subjects with Chronic Dizziness (GOODNESS Study): Study Protocol for a Prospective, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Clinical Trial for Effectiveness, Safety, and Cost-Effectiveness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4363716. [PMID: 29387128 PMCID: PMC5745661 DOI: 10.1155/2017/4363716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022]
Abstract
This study protocol aims to explore the effectiveness, safety, and cost-effectiveness of a herbal medication, Gongjindan (GJD), in patients with chronic dizziness. This will be a prospective, multicenter, randomized, double-blind, placebo-controlled, parallel-group, clinical trial. Seventy-eight patients diagnosed with Meniere's disease, psychogenic dizziness, or dizziness of unknown cause will be randomized and allocated to either a GJD or a placebo group in a 1 : 1 ratio. Participants will be orally given 3.75 g GJD or placebo in pill form once a day for 56 days. The primary outcome measure will be the Dizziness Handicap Inventory score. Secondary outcome measures will be as follows: severity (mean vertigo scale and visual analogue scale) and frequency of dizziness, balance function (Berg Balance Scale), fatigue (Fatigue Severity Scale) and deficiency pattern/syndrome (qi blood yin yang-deficiency questionnaire) levels, and depression (Korean version of Beck's Depression Inventory) and anxiety (State-Trait Anxiety Inventory) levels. To assess safety, adverse events, including laboratory test results, will be monitored. Further, the incremental cost-effectiveness ratio will be calculated based on quality-adjusted life years (from the EuroQoL five dimensions' questionnaire) and medical expenses. Data will be statistically analyzed at a significance level of 0.05 (two-sided). This trial is registered with ClinicalTrials.gov NCT03219515, in July 2017.
Collapse
Affiliation(s)
- Seungwon Shin
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jinyoung Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ami Yu
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Sik Seo
- Department of Korean Medical Ophthalmology & Otolaryngology & Dermatology, School of Korean Medicine, Pusan National University, 20 Geumo-ro, Mulgeum-eup, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Mi-Ran Shin
- Department of Sasang Constitutional Medicine, College of Oriental Medicine, Semyung University, 65 Semyung-ro, Jecheon, Chungcheongbuk-do 27136, Republic of Korea
| | - Jae-Heung Cho
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Gilhee Yi
- Department of Oriental Medicine Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Dongguk University, 27 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Seung-Ug Hong
- Department of Oriental Medicine Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Dongguk University, 27 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Euiju Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Neuronal Regeneration after Electroacupuncture Treatment in Ischemia-Reperfusion-Injured Cerebral Infarction Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3178014. [PMID: 28913350 PMCID: PMC5587926 DOI: 10.1155/2017/3178014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 01/30/2023]
Abstract
Adult neuronal cells which can regenerate have been reported. The present study investigated whether acupuncture enhances neuronal regeneration in ischemic stroke rats. We established an ischemic stroke rat model by occluding the cerebral blood flow of the right middle cerebral artery for 15 minutes and then allowing reperfusion in Sprague–Dawley rats. The results indicated that, in these rats, 2 Hz electroacupuncture (EA) at both Zusanli (ST36) and Shangjuxu (ST37) acupoints reduced the infarction/hemisphere ratio 8 days after reperfusion and reduced the modified neurological severity score (mNSS) and increased the rotarod test time 4 and 8 days after reperfusion, respectively. In addition, 2 Hz reduced nestin immunoreactive cells in the penumbra area and the ischemic core area; 2 Hz EA also reduced Ki67 immunoreactive cells and increased glial fibrillary acidic protein immunoreactive cells in the penumbra area. These findings suggest that 2 Hz EA at the ST36 and ST37 acupoints has a neuroprotective role. However, additional studies are needed to further investigate these preliminary results.
Collapse
|
9
|
Lee JS, Hong SS, Kim HG, Lee HW, Kim WY, Lee SK, Son CG. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia. PLoS One 2016; 11:e0159823. [PMID: 27483466 PMCID: PMC4970723 DOI: 10.1371/journal.pone.0159823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/09/2016] [Indexed: 02/02/2023] Open
Abstract
We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal’s learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Sung-Shin Hong
- Korean Medical College of Daejeon University, 22–5 Yongwoon-dong, Dong-gu, Daejeon301-724, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Hye-Won Lee
- TKM-based Herbal Drug Research Group, Korea Institute of Oriental Medicine, Daejeon 305–811, Republic of Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Hong SS, Lee JY, Lee JS, Lee HW, Kim HG, Lee SK, Park BK, Son CG. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:268-278. [PMID: 25865680 DOI: 10.1016/j.jep.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gongjin-Dan is a representative traditional Oriental medicine herbal drug that has been used to treat chronic fatigue symptoms for several hundred years. We evaluated the anti-fatigue effects of Gongjin-Dan and the underlying mechanisms in a chronic forced exercise mouse model. METHODS AND MATERIALS Balb/C male mice underwent an extreme treadmill-based running stress (1-h, 5 days/week), and daily oral administration of distilled water, Gongjin-Dan (100, 200, or 400 mg/kg), or ascorbic acid (100 mg/kg) for 28 days. The anti-fatigue effects of Gongjin-Dan were evaluated with behavioral tests (exercise tolerance and swimming tests), and the corresponding mechanisms were investigated based on oxidative stress and inflammatory cytokine and stress hormone levels in skeletal muscle, sera, and brain tissue. RESULTS Gongjin-Dan significantly increased exercise tolerance and latency times but reduced the number of electric shocks and immobilization time on the treadmill running and swimming tests, compared with the control group. Gongjin-Dan also significantly ameliorated alterations in oxidative stress-related biomarkers (reactive oxygen species and malondialdehyde), inflammatory cytokines (tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interferon-γ) and glycogen and L-lactate levels in skeletal muscle, compared with those in the control group. Moreover, Gongjin-Dan considerably normalized the forced running stress-induced changes in serum corticosterone and adrenaline levels, as well as brain serotonin level. These antioxidant and anti-stress effects of Gongjin-Dan were supported by the results of Western blotting (4-hydroxynonenal and heme oxygenase-1) and the gene expression levels (serotonin receptor and serotonin transporter). CONCLUSION These results support the clinical relevance of Gongjin-Dan regarding anti-chronic fatigue properties. The underlying mechanisms involve attenuation of oxidative and inflammatory reactions in muscle and regulation of the stress response through the hypothalmo-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Sung-Shin Hong
- Korean Medical College of Daejeon University, 22-5 Yongwoon-dong, Dong-gu, Daejeon 301-724, Republic of Korea
| | - Ji-Young Lee
- Korean Medical College of Daejeon University, 22-5 Yongwoon-dong, Dong-gu, Daejeon 301-724, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon 301-704, Republic of Korea
| | - Hye-Won Lee
- TKM-based Herbal Drug Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon 301-704, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Oriental Medicine College of Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 300-716, Republic of Korea
| | - Bong-Ki Park
- Medical research division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Chang-Gue Son
- Korean Medical College of Daejeon University, 22-5 Yongwoon-dong, Dong-gu, Daejeon 301-724, Republic of Korea.
| |
Collapse
|
11
|
Jung YJ, Kim R, Ham HJ, Park SI, Lee MY, Kim J, Hwang J, Park MS, Yoo SS, Maeng LS, Chang W, Chung YA. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:999-1007. [PMID: 25701528 DOI: 10.1016/j.ultrasmedbio.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
A number of studies have reported the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) for induction of bone repair. This study investigated whether bone regeneration might be enhanced by application of focused LIPUS to selectively stimulate fractured calvarial bone. To accomplish this, bone defects were surgically created in the middle of the skull of rats that were subsequently exposed to focused LIPUS. Bone regeneration was assessed by repeated computed tomography imaging after the operation, as well as histologic analysis with calcein, hematoxylin and eosin and proliferating cell nuclear antigen assay. At 6 wk after surgery, bone formation in the focused LIPUS-treated group improved significantly relative to the control. Interestingly, new bone tissue sprouted from focused LIPUS target points. Histologic analysis after exposure to focused LIPUS revealed that proliferating cells were significantly increased relative to the control. Taken together, these results suggest that focused LIPUS can improve re-ossification through enhancement of cell proliferation in calvarial defect sites.
Collapse
Affiliation(s)
- Yu Jin Jung
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Hyun-Joo Ham
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Yongsan-gu Seoul, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Moon-Seo Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea.
| | - Yong-An Chung
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, Catholic University of Korea, Incheon, Republic of Korea.
| |
Collapse
|
12
|
Oldenlandia diffusa Promotes Antiproliferative and Apoptotic Effects in a Rat Hepatocellular Carcinoma with Liver Cirrhosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:501508. [PMID: 25852766 PMCID: PMC4379430 DOI: 10.1155/2015/501508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/11/2023]
Abstract
Oldenlandia diffusa (OD) is commonly used with various diseases such as cancer, arthritis, and autoimmune disease. Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). Here, we show that the therapeutic effect of OD, which was investigated both in vitro and chemically, induced HCC model. OD significantly enhanced apoptosis and antiproliferative activity and reduced migration ability of HCC cells. In vivo, OD was treated twice a day for 28 days after confirmed HCC model through 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) imaging. The survival in OD treated groups was shown to have a greater therapeutic effect than the control group. 28 days after OD treatment, OD treated groups resulted in a significant reduction in tumor number, size, 18F-FDG uptake, and serum levels such as alanine transaminase, aspartate transaminase, and alkaline phosphate compared to the control group. Also, proliferated cells in tumor sites by OD were reduced compared to the control group. Furthermore, several rats in OD treated group survived over 60 days and liver morphology of these rats showed the difference between tumor mass and normal tissue. These results suggest that OD may have antiproliferative activity, inhibition of metastasis, and apoptotic effects in chemically induced HCC model and can have the potential use for clinical application as anticancer drug of the herbal extract.
Collapse
|
13
|
Sun H, Tang Y, Li L, Guan X, Wang D. Effects of local hypothermia on neuronal cell apoptosis after intracerebral hemorrhage in rats. J Nutr Health Aging 2015; 19:291-8. [PMID: 25732214 DOI: 10.1007/s12603-015-0469-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) is a devastating subtype of stroke that is characterized by significant morbidity and mortality. Thus far, there is no effective treatment option for spontaneous ICH. In this study, we aimed to investigate the effects of local hypothermia on brain injuries after ICH. MEASUREMENTS Bacterial collagenase was used to induce ICH stroke in male Wistar rats. We assessed the effects of normothermia and 4 hours of local hypothermia (~33.2°C) initiated 1 hour after collagenase infusion on the neurological outcomes and brain water content at 1 and 3 days after ICH. The pathological changes of neuronal ultrastructure were examined with transmission electron microscopy. Furthermore, the expression levels of apoptotic molecules and matrix metalloproteinases-9 (MMP-9) were determined using western blotting and immunohistochemical staining. Results :Local hypothermia tends to reduce neurological deficits compared with the normothermic group at day 3 after ICH. Transmission electron microscopy reveals that local hypothermia significantly improves the ultrastructural outcomes at 1 and 3 days after ICH. In addition, local hypothermia markedly reduces edema formation and the expression levels of MMP-9 and apoptotic signal. CONCLUSION These data suggest that local hypothermia induces a reduction in the brain edema and partly reduces neurological deficits along with marked inhibitory effects on MMP-9 and cell apoptosis after ICH.
Collapse
Affiliation(s)
- H Sun
- M.R. Wang, Department of Neurology, First Affiliated Hospital of Harbin Medical University, Youzheng Str, Nangang District, Harbin, P.R. China; postal code:150001; ph:+86-0451-53603616; E-mail address:
| | | | | | | | | |
Collapse
|
14
|
Shu X, Zhang Y, Xu H, Kang K, Cai D. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia. Neural Regen Res 2014; 8:2370-8. [PMID: 25206547 PMCID: PMC4146044 DOI: 10.3969/j.issn.1673-5374.2013.25.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.
Collapse
Affiliation(s)
- Xiaoliang Shu
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Yongsheng Zhang
- Department of Nutrition, First Affiliated Hospital of Guangxi Medical University, Nanning 530027, Guangxi Zhuang Autonomous Region, China
| | - Han Xu
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Kai Kang
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Donglian Cai
- Department of Nutrition, Affiliated Changhai Hospital of the Second Military Medical University of Chinese PLA, Shanghai 200433, China
| |
Collapse
|
15
|
Bae WJ, Ha US, Kim S, Kim SJ, Hong SH, Lee JY, Hwang TK, Hwang SY, Kim HJ, Kim SW. Reduction of oxidative stress may play a role in the anti-inflammatory effect of the novel herbal formulation in a rat model of hydrochloric acid-induced cystitis. Neurourol Urodyn 2013; 34:86-91. [DOI: 10.1002/nau.22507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Woong-Jin Bae
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - U-Syn Ha
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Seol Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Su-Jin Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Sung-Hoo Hong
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Ji-Youl Lee
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Tae-Kon Hwang
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | | | - Hong-Jun Kim
- College of Oriental Medicine; Woosuk University; Wanju Korea
| | - Sae-Woong Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| |
Collapse
|