1
|
Kwok JC, Sato Y, Niggel JK, Ozdogan E, Murgiano L, Miyadera K. Delayed-onset cord1 progressive retinal atrophy in English Springer Spaniels genetically affected with the RPGRIP1 variant. Vet Ophthalmol 2024. [PMID: 39428496 DOI: 10.1111/vop.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cone-rod dystrophy (cord1) is a form of progressive retinal atrophy. It is linked to an RPGRIP1 genetic variant which is the third most common canine disease variant thus far. While the variant affects various breeds, it is highly prevalent in English Springer Spaniels (ESSs). Yet its clinical and pathological implications remain equivocal. Herein, we study the retinal phenotype in ESSs genetically affected with the RPGRIP1 variant. ANIMAL STUDIED Over 4 years, 494 ESSs (123 affected) were enrolled. PROCEDURE(S) Owner-perceived vision was collected via a questionnaire. Ophthalmic examination included fundus photography. In selected ESSs, retinal function and structure were assessed using electroretinography (ERG, 148 dogs) and optical coherence tomography (OCT, 4 dogs). RESULTS Ophthalmoscopic changes included peripheral hypo-reflective lesions often with distinct borders progressing centripetally culminating in generalized retinal atrophy. Cross-sectional study revealed declining photopic ERG amplitudes with age in the affected group but not in controls. OCT indicated progressive photoreceptor loss. Despite ophthalmoscopic, ERG, or OCT abnormalities, most affected dogs were not visually impaired per their owners. In a fraction of afflicted ESSs, vision/globe-threatening complications were documented including cataracts, lens luxation, and glaucoma. CONCLUSIONS In ESSs, the RPGRIP1 variant is associated with insidious pathology with delayed-onset visual defects. The subtle phenotype without apparent visual deficit until the final years of life, if at all, may have caused underdiagnosis of cord1. Still, DNA testing remains informative, and ERG and OCT indicate progressive pathology. Peripheral fundus examination and photopic ERG are particularly useful for early detection and monitoring of cord1.
Collapse
Affiliation(s)
- Jennifer C Kwok
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Sato
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica K Niggel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Ozdogan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bortolini M, Winkler PA, Moreno JCD, Sato MT, Guareschi BLV, Petersen-Jones SM, Montiani-Ferreira F. Preliminary characterization of a novel form of progressive retinal atrophy in the German Spitz dog associated with a frameshift mutation in GUCY2D. Vet Ophthalmol 2023; 26:532-547. [PMID: 36872573 DOI: 10.1111/vop.13079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE To describe the clinical, preliminary electroretinographic and optical coherence tomography features of a newly identified form of progressive retinal atrophy (PRA) in German Spitzes, and identify the causal gene mutation. ANIMALS Thirty-three client-owned German Spitz dogs were included. PROCEDURES All animals underwent a full ophthalmic examination, including vision testing. In addition, fundus photography, ERG, and OCT were performed. A DNA-marker-based association analysis was performed to screen potential candidate genes and the whole genomes of four animals were sequenced. RESULTS Initial fundus changes were pale papilla and mild vascular attenuation. Oscillatory nystagmus was noted in 14 of 16 clinically affected puppies. Vision was impaired under both scotopic and photopic conditions. Rod-mediated ERGs were unrecordable in all affected dogs tested, reduced cone-mediated responses were present in one animal at 3 months of age and unrecordable in the other affected animals tested. Multiple small retinal bullae were observed in three clinically affected animals (two with confirmed genetic diagnosis). OCT showed that despite loss of function, retinal structure was initially well-preserved, although a slight retinal thinning developed in older animals with the ventral retina being more severely affected. Pedigree analysis supported an autosomal recessive inheritance. A mutation was identified in GUCY2D, which segregated with the disease (NM_001003207.1:c.1598_1599insT; p.(Ser534GlufsTer20)). Human subjects with GUCY2D mutations typically show an initial disconnect between loss of function and loss of structure, a feature recapitulated in the affected dogs in this study. CONCLUSION We identified early-onset PRA in the German Spitz associated with a frameshift mutation in GUCY2D.
Collapse
Affiliation(s)
- Mariza Bortolini
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Puerto Rico, Brazil
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Mario Teruo Sato
- Department of Ophthalmology, Federal University of Paraná, Curitiba, Paraná, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
3
|
Forman OP, Hitti RJ, Boursnell M, Miyadera K, Sargan D, Mellersh C. Canine genome assembly correction facilitates identification of a MAP9 deletion as a potential age of onset modifier for RPGRIP1-associated canine retinal degeneration. Mamm Genome 2016; 27:237-45. [PMID: 27017229 DOI: 10.1007/s00335-016-9627-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/15/2016] [Indexed: 11/25/2022]
Abstract
Retinal degeneration (RD) in the Miniature Long Haired Dachshund (MLHD) is a cone-rod dystrophy resulting in eventual blindness in affected individuals. In a previous study, a 44-nucleotide insertion (ins44) in exon 2 of RPGRIP1 was associated with RD. However, results on an extended population of MLHD revealed a variable RD onset age for ins44 homozygous dogs. Further investigations using a genome-wide association study comparing early onset and late onset RD cases identified an age of onset modifying locus for RD, approximately 30 Mb upstream of RPGRIP1 on chr15. In this investigation, target enriched sequencing identified a MAP9 deletion spanning approximately 22 kb associated with early RD onset. Identification of the deletion required correction to the CanFam3.1 genome build as canine MAP9 is part of a historic tandem duplication, resulting in incomplete assembly of this genome region. The deletion breakpoints were identified in MAP9 intron 10 and in a downstream partial MAP9 pseudogene. The fusion of these two genes, which we have called MAP9 EORD (microtubule-associated protein, early onset retinal degeneration), is in frame and is expressed at the RNA level, with the 3' region containing several predicted deleterious variants. We speculate that MAP9 associates with α-tubulin in the basal body of the cilium. RPGRIP1 is also known to locate to the cilium, where it is closely associated with RPGR. RPGRIP1 mutations also cause redistribution of α-tubulin away from the ciliary region in photoreceptors. Hence, a MAP9 partial deficit is a particularly attractive candidate to synergise with a partial RPGRIP1 deficit to cause a more serious disease.
Collapse
Affiliation(s)
- Oliver P Forman
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK.
| | - Mike Boursnell
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - David Sargan
- Comparative Genetics Group, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Rd., Cambridge, CB3 0ES, UK
| | - Cathryn Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
4
|
Broeckx BJG, Coopman F, Verhoeven GEC, De Keulenaer S, De Meester E, Bavegems V, Smets P, Van Ryssen B, Van Nieuwerburgh F, Deforce D. Toward the most ideal case-control design with related and unrelated dogs in whole-exome sequencing studies. Anim Genet 2015; 47:200-7. [PMID: 26689130 DOI: 10.1111/age.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Abstract
With the recent development of whole-exome sequencing enrichment designs for the dog, a novel tool for disease-association studies became available. The aim of disease-association studies is to identify one or a very limited number of putative causal variants or genes from the large pool of genetic variation. To maximize the efficiency of these studies and to provide some directions of what to expect, we evaluated the effect on variant reduction for various combinations of cases and controls for both dominant and recessive types of inheritance assuming variable degrees of penetrance and detectance. In this study, variant data of 14 dogs (13 Labrador Retrievers and one Dogue de Bordeaux), obtained by whole-exome sequencing, were analyzed. In the filtering process, we found that unrelated dogs from the same breed share up to 70% of their variants, which is likely a consequence of the breeding history of the dog. For the designs tested with unrelated dogs, combining two cases and two controls gave the best result. These results were improved further by adding closely related dogs. Reduced penetrance and/or detectance has a drastic effect on the efficiency and is likely to have a profound effect on the sample size needed to elucidate the causal variant. Overall, we demonstrated that sequencing a small number of dogs results in a marked reduction of variants that are likely sufficient to pinpoint causal variants or genes.
Collapse
Affiliation(s)
- B J G Broeckx
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - F Coopman
- Department of Applied Biosciences, University College Ghent, 9000, Ghent, Belgium
| | - G E C Verhoeven
- Department of Medical Imaging and Small Animal Orthopaedics, Ghent University, 9820, Merelbeke, Belgium
| | - S De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - E De Meester
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - V Bavegems
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, 9820, Merelbeke, Belgium
| | - P Smets
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, 9820, Merelbeke, Belgium
| | - B Van Ryssen
- Department of Medical Imaging and Small Animal Orthopaedics, Ghent University, 9820, Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Svensson M, Olsén L, Winkler PA, Petersen-Jones SM, Bergström T, Garncarz Y, Narfström K. Progressive retinal atrophy in the Polski Owczarek Nizinny dog: a clinical and genetic study. Vet Ophthalmol 2015; 19:195-205. [PMID: 26009980 DOI: 10.1111/vop.12284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe ophthalmic, functional, structural, and genetical characteristics of progressive retinal atrophy (PRA) in the polski owczarek nizinny (PON) breed of dog. ANIMALS STUDIED CLINICALLY Client-owned PON dogs (n = 82) from Sweden. PROCEDURES Routine examination for presumed inherited eye disease was performed in all dogs. Bilateral full-field electroretinography (ERG) was performed in 11 affected and 4 control dogs. Eyes from one affected dog were studied with light microscopy. DNA samples from 34 Swedish and 30 PON dogs collected by Michigan State University (MSU) were tested for the mutations causing the rcd4 and prcd forms of PRA. RESULTS Sixteen of the eighty-two Swedish dogs were diagnosed with PRA. Slight vascular attenuation, first seen at 4.5 years of age, preceded changes in tapetal reflectivity. The initial ERG changes in affected dogs showed markedly diminished rod responses, while cone responses were barely affected. Eventually, cone responses were also reduced. Retinal morphology showed approximately a 50% reduction of photoreceptor nuclei in the outer nuclear layer. Fourteen of fifteen PRA-affected Swedish dogs and eighteen of twenty of the MSU PRA-affected dogs tested genetically were positive for the rcd4 mutation. All tested dogs were negative for the mutation causing prcd-PRA. CONCLUSIONS PRA of PON dogs is a late-onset degenerative disease with slow progression. There is early loss of rod function, while the cone system deteriorates later. The rcd4 mutation in the C2ORF71 gene was associated with the majority of the PRA cases tested. The possibility of additional forms of PRA in the breed cannot be excluded.
Collapse
Affiliation(s)
- Marika Svensson
- Blue Star Animal Hospital, Gjutjärnsgatan 4, Gothenburg, 417 07, Sweden
| | - Lena Olsén
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road D, 208, East Lansing, MI, USA.,Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road D, 208, East Lansing, MI, USA.,Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tomas Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yacek Garncarz
- Veterinary Eye Clinic, Grupy AK Polnoc 2/u10, Warsaw, 00-713, Poland
| | - Kristina Narfström
- College of Veterinary Medicine, 900 East Campus Drive, Columbia, MO, 65211, USA.,Retvet KB, Karlsuddsvägen 14b, Vaxholm, 185 93, Sweden
| |
Collapse
|