1
|
Saed M, Mahani H, Sadremomtaz A. Characterization of accurate 3D collimator-detector response function for single- and multi-lofthole collimated SPECT cameras. Jpn J Radiol 2024; 42:1330-1341. [PMID: 38954193 DOI: 10.1007/s11604-024-01624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Collimator-detector response function (CDRF) of a SPECT scanner refers to the image generated from a point source of activity. This research aims to characterize the CDRF of a breast-dedicated SPECT imager equipped with a lofthole collimator using GATE Monte Carlo simulation. MATERIALS AND METHODS To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99mTc point source was considered. RESULTS For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0∘ to 34∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV. CONCLUSION In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.
Collapse
Affiliation(s)
- Maryam Saed
- Department of Physics, Faculty of Science, University of Guilan, 41635-1914 Rasht, Iran
| | - Hojjat Mahani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, 14395-836 Tehran, Iran.
| | - Alireza Sadremomtaz
- Department of Physics, Faculty of Science, University of Guilan, 41635-1914 Rasht, Iran
| |
Collapse
|
2
|
Romeo V, Helbich TH, Pinker K. Breast PET/MRI Hybrid Imaging and Targeted Tracers. J Magn Reson Imaging 2023; 57:370-386. [PMID: 36165348 PMCID: PMC10074861 DOI: 10.1002/jmri.28431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
The recent introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) as a promising imaging modality for breast cancer assessment has prompted fervent research activity on its clinical applications. The current knowledge regarding the possible clinical applications of hybrid PET/MRI is constantly evolving, thanks to the development and clinical availability of hybrid scanners, the development of new PET tracers and the rise of artificial intelligence (AI) techniques. In this state-of-the-art review on the use of hybrid breast PET/MRI, the most promising advanced MRI techniques (diffusion-weighted imaging, dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, and chemical exchange saturation transfer) are discussed. Current and experimental PET tracers (18 F-FDG, 18 F-NaF, choline, 18 F-FES, 18 F-FES, 89 Zr-trastuzumab, choline derivatives, 18 F-FLT, and 68 Ga-FAPI-46) are described in order to provide an overview on their molecular mechanisms of action and corresponding clinical applications. New perspectives represented by the use of radiomics and AI techniques are discussed. Furthermore, the current strengths and limitations of hybrid PET/MRI in the real world are highlighted. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Thomas H Helbich
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria
| | - Katja Pinker
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
What's in a node? The clinical and radiologic significance of Virchow's node. Abdom Radiol (NY) 2022; 47:2244-2253. [PMID: 35316379 DOI: 10.1007/s00261-022-03487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/01/2022]
Abstract
In 1848, Rudolf Ludwig Karl Virchow described an association of left supraclavicular lymphadenopathy with abdominal malignancy. The left supraclavicular lymph node later became commonly referred to as Virchow's node. Charles-Emile Troisier went on to describe the physical exam finding of an enlarged left supraclavicular lymph node, later termed Troisier's sign. Subsequent studies confirmed a predilection of abdominal and pelvic malignancies to preferentially metastasize to the left supraclavicular node. Identification of a pathologically enlarged left supraclavicular node raises the suspicion for abdominopelvic malignancy, particularly in the absence of right supraclavicular lymphadenopathy, and provides a safe and easy target for biopsy. Supraclavicular lymph nodes also represent a great target for diagnosis of metastatic thoracic malignancies, although thoracic malignancies can involve either right or left supraclavicular nodes and do not show a predilection for either. This article presents a review of the history, anatomy, pathophysiology, clinical significance, radiological appearance, and biopsy of Virchow's node. Key points are illustrated with relevant cases.
Collapse
|
4
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- *Correspondence: Michele Balma
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Sugar alcohol provides imaging contrast in cancer detection. Sci Rep 2019; 9:11092. [PMID: 31366892 PMCID: PMC6668433 DOI: 10.1038/s41598-019-47275-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Clinical imaging is widely used to detect, characterize and stage cancers in addition to monitoring the therapeutic progress. Magnetic resonance imaging (MRI) aided by contrast agents utilizes the differential relaxivity property of water to distinguish between tumorous and normal tissue. Here, we describe an MRI contrast method for the detection of cancer using a sugar alcohol, maltitol, a common low caloric sugar substitute that exploits the chemical exchange saturation transfer (CEST) property of the labile hydroxyl group protons on maltitol (malCEST). In vitro studies pointed toward concentration and pH-dependent CEST effect peaking at 1 ppm downfield to the water resonance. Studies with control rats showed that intravenously injected maltitol does not cross the intact blood-brain barrier (BBB). In glioma carrying rats, administration of maltitol resulted in the elevation of CEST contrast in the tumor region only owing to permeable BBB. These preliminary results show that this method may lead to the development of maltitol and other sugar alcohol derivatives as MRI contrast agents for a variety of preclinical imaging applications.
Collapse
|
6
|
Jiang J, Li K, Komarov S, O'Sullivan JA, Tai YC. Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability. Med Phys 2019; 46:1798-1813. [PMID: 30667069 DOI: 10.1002/mp.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE We investigated the feasibility of a novel positron emission tomography (PET) system that provides near real-time feedback to an operator who can interactively scan a patient to optimize image quality. The system should be compact and mobile to support point-of-care (POC) molecular imaging applications. In this study, we present the key technologies required and discuss the potential benefits of such new capability. METHODS The core of this novel PET technology includes trackable PET detectors and a fully three-dimensional, fast image reconstruction engine implemented on multiple graphics processing units (GPUs) to support dynamically changing geometry by calculating the system matrix on-the-fly using a tube-of-response approach. With near real-time image reconstruction capability, a POC-PET system may comprise a maneuverable front PET detector and a second detector panel which can be stationary or moved synchronously with the front detector such that both panels face the region-of-interest (ROI) with the detector trajectory contoured around a patient's body. We built a proof-of-concept prototype using two planar detectors each consisting of a photomultiplier tube (PMT) optically coupled to an array of 48 × 48 lutetium-yttrium oxyorthosilicate (LYSO) crystals (1.0 × 1.0 × 10.0 mm3 each). Only 38 × 38 crystals in each arrays can be clearly re-solved and used for coincidence detection. One detector was mounted to a robotic arm which can position it at arbitrary locations, and the other detector was mounted on a rotational stage. A cylindrical phantom (102 mm in diameter, 150 mm long) with nine spherical lesions (8:1 tumor-to-background activity concentration ratio) was imaged from 27 sampling angles. List-mode events were reconstructed to form images without or with time-of-flight (TOF) information. We conducted two Monte Carlo simulations using two POC-PET systems. The first one uses the same phantom and detector setup as our experiment, with the detector coincidence re-solving time (CRT) ranging from 100 to 700 ps full-width-at-half-maximum (FWHM). The second study simulates a body-size phantom (316 × 228 × 160 mm3 ) imaged by a larger POC-PET system that has 4 × 6 modules (32 × 32 LYSO crystals/module, four in axial and six in transaxial directions) in the front panel and 3 × 8 modules (16 × 16 LYSO crystals/module, three in axial and eight in transaxial directions) in the back panel. We also evaluated an interactive scanning strategy by progressively increasing the number of data sets used for image reconstruction. The updated images were analyzed based on the number of data sets and the detector CRT. RESULTS The proof-of-concept prototype re-solves most of the spherical lesions despite a limited number of coincidence events and incomplete sampling. TOF information reduces artifacts in the reconstructed images. Systems with better timing resolution exhibit improved image quality and reduced artifacts. We observed a reconstruction speed of 0.96 × 106 events/s/iteration for 600 × 600 × 224 voxel rectilinear space using four GPUs. A POC-PET system with significantly higher sensitivity can interactively image a body-size object from four angles in less than 7 min. CONCLUSIONS We have developed GPU-based fast image reconstruction capability to support a PET system with arbitrary and dynamically changing geometry. Using TOF PET detectors, we demonstrated the feasibility of a PET system that can provide timely visual feedback to an operator who can scan a patient interactively to support POC imaging applications.
Collapse
Affiliation(s)
- Jianyong Jiang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MI, 63110, USA
| | - Ke Li
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MI, 63130, USA
| | - Sergey Komarov
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MI, 63110, USA
| | - Joseph A O'Sullivan
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MI, 63130, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MI, 63110, USA
| |
Collapse
|
7
|
Behring M, Shrestha S, Manne U, Cui X, Gonzalez-Reymundez A, Grueneberg A, Vazquez AI. Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma. Oncotarget 2018; 9:36836-36848. [PMID: 30627325 PMCID: PMC6305147 DOI: 10.18632/oncotarget.26386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Background Lymph node metastasis (NM) in breast cancer is a clinical predictor of patient outcomes, but how its genetic underpinnings contribute to aggressive phenotypes is unclear. Our objective was to create the first landscape analysis of CNV-associated NM in ductal breast cancer. To assess the role of copy number variations (CNVs) in NM, we compared CNVs and/or associated mRNA expression in primary tumors of patients with NM to those without metastasis. Results We found CNV loss in chromosomes 1, 3, 9, 18, and 19 and gains in chromosomes 5, 8, 12, 14, 16-17, and 20 that were associated with NM and replicated in both databases. In primary tumors, per-gene CNVs associated with NM were ten times more frequent than mRNA expression; however, there were few CNV-driven changes in mRNA expression that differed by nodal status. Overlapping regions of CNV changes and mRNA expression were evident for the CTAGE5 gene. In 8q12, 11q13-14, 20q1, and 17q14-24 regions, there were gene-specific gains in CNV-driven mRNA expression associated with NM. Methods Data on CNV and mRNA expression from the TCGA and the METABRIC consortium of breast ductal carcinoma were utilized to identify CNV-based features associated with NM. Within each dataset, associations were compared across omic platforms to identify CNV-driven variations in gene expression. Only replications across both datasets were considered as determinants of NM. Conclusions Gains in CTAGE5, NDUFC2, EIF4EBP1, and PSCA genes and their expression may aid in early diagnosis of metastatic breast carcinoma and have potential as therapeutic targets.
Collapse
Affiliation(s)
- Michael Behring
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Upender Manne
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Department of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiangqin Cui
- Biostatistics Department, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Agustin Gonzalez-Reymundez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Alexander Grueneberg
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Dedicated breast PET value to evaluate BI-RADS 4 breast lesions. Eur J Radiol 2018; 108:201-207. [DOI: 10.1016/j.ejrad.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
|
9
|
Diagnostic performance of a novel dedicated breast PET scanner with C-shaped ring detectors. Nucl Med Commun 2017; 38:388-395. [DOI: 10.1097/mnm.0000000000000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Sadeghzadeh M, Alirezapour B, Charkhlooie GA, Baghery MK, Khorouti A. Radioiodination and preclinical evaluation of 4-benzyl-1-(3-[ 125I]-iodobenzylsulfonyl)piperidine as a breast tumor imaging tracer in mouse. Ann Nucl Med 2017; 31:335-346. [PMID: 28315150 DOI: 10.1007/s12149-017-1161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/25/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE 4-Benzyl-1-(3-iodobenzylsulfonyl)piperidine, 4-B-IBSP, has shown high-binding affinity to both sigma (σ) receptors in our previous work. In current study, radiolabeling and preclinical evaluation of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl)piperidine, 4-B-[125I]IBSP, in human ductal breast carcinoma (T47D) cells and in breast adenocarcinoma-bearing BALB/c mice are described. METHODS Radioiodination of this new σ ligand was performed by a palladium-catalyzed stannylation approach followed by oxidative iododestannylation reaction using Iodo-Gen. Competition-binding assays for binding of 4-B-[125I]IBSP to guinea pig brain membranes and to T47D cells were performed with known σ ligands. The selectivity and binding characteristics (B max and K d) were analyzed. In vitro stability and in vivo blood metabolism studies were also evaluated. Moreover, biodistribution studies were performed in normal and into the tumor-bearing mice at interval time points post-injection (p.i.). Both in vitro and in vivo blockade experiments were done in the presence of the σ receptors blocking agents. RESULTS Radioiodinated ligand was obtained in high yield and high specific activity. The σ inhibition constants (K i, nM) for 4-(3-iodobenzyl)-1-(benzylsulfonyl)piperazine (4-IBBSPz), (+)-pentazocine, haloperidol, DTG, and 4-B-IBSP were 1.37 ± 0.19, 3.90 ± 0.77, 2.69 ± 0.33, 30.62 ± 2.01, and 0.61 ± 0.05, respectively. 4-B-[125I]IBSP bound to σ receptor sites preferably to very high-affinity binding sites on T47D cells. The radioligand showed acceptable in vitro and in vivo stabilities in the blood pool. However, in vivo biodistribution studies in normal Swiss albino mice revealed fast clearance of 4-B-[125I]IBSP from blood and the other normal organs. Biodistribution experiments of 4-B-[125I]IBSP in breast adenocarcinoma tumor-bearing BALB/c mice showed a relatively high tumor uptake at 30 min p.i. (4.13 ± 0.95) that reaches to 1.57 ± 0.24 even after 240 min p.i. A pre-injection of 4-B-IBSP and haloperidol with 4-B-[125I]IBSP resulted in 36-57% decrease in activity in the tumor, liver, and brain at 60 min p.i. CONCLUSIONS The high affinity of 4-B-[125I]IBSP to σ receptor-binding sites, its relatively high uptake, and preferential retention in the tumor as well as an increasing trend observed in the tumor to blood and in the tumor to muscle ratios suggests that an iodine-123 labeled counterpart, 4-B-[123I]IBSP, would be a promising σ radioligand for pursuing further studies to assess its potential for breast tumors imaging with SPECT.
Collapse
Affiliation(s)
- Masoud Sadeghzadeh
- Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran, Iran.
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran, Iran
| | - Ghorban Ali Charkhlooie
- Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran, Iran
| | - Maryam Keshavarz Baghery
- Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran, Iran
| | - Amir Khorouti
- Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran, Iran
| |
Collapse
|
11
|
Alcantara D, Leal MP, García-Bocanegra I, García-Martín ML. Molecular imaging of breast cancer: present and future directions. Front Chem 2014; 2:112. [PMID: 25566530 PMCID: PMC4270251 DOI: 10.3389/fchem.2014.00112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.
Collapse
Affiliation(s)
- David Alcantara
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Manuel Pernia Leal
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Irene García-Bocanegra
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Maria L García-Martín
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| |
Collapse
|
12
|
Pinker K, Helbich TH, Magometschnigg H, Fueger B, Baltzer P. [Molecular breast imaging. An update]. Radiologe 2014; 54:241-53. [PMID: 24557495 DOI: 10.1007/s00117-013-2580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. STANDARD RADIOLOGICAL METHODS Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). METHODICAL INNOVATIONS Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. PRACTICAL RECOMMENDATIONS It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.
Collapse
Affiliation(s)
- K Pinker
- Abteilung für Molekulare Bildgebung, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | | | | | | | | |
Collapse
|
13
|
Tessonnier L, Siles P. Que peut-on attendre des nouvelles techniques de médecine nucléaire dans le bilan local du cancer du sein ? IMAGERIE DE LA FEMME 2013. [DOI: 10.1016/j.femme.2013.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Meng Q, Li Z. Molecular imaging probes for diagnosis and therapy evaluation of breast cancer. Int J Biomed Imaging 2013; 2013:230487. [PMID: 23533377 PMCID: PMC3600346 DOI: 10.1155/2013/230487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/27/2012] [Accepted: 01/09/2013] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.
Collapse
Affiliation(s)
- Qingqing Meng
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Zheng Li
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6670 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
15
|
Secky L, Svoboda M, Klameth L, Bajna E, Hamilton G, Zeillinger R, Jäger W, Thalhammer T. The sulfatase pathway for estrogen formation: targets for the treatment and diagnosis of hormone-associated tumors. JOURNAL OF DRUG DELIVERY 2013; 2013:957605. [PMID: 23476785 PMCID: PMC3586502 DOI: 10.1155/2013/957605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/15/2022]
Abstract
The extragonadal synthesis of biological active steroid hormones from their inactive precursors in target tissues is named "intracrinology." Of particular importance for the progression of estrogen-dependent cancers is the in situ formation of the biological most active estrogen, 17beta-estradiol (E2). In cancer cells, conversion of inactive steroid hormone precursors to E2 is accomplished from inactive, sulfated estrogens in the "sulfatase pathway" and from androgens in the "aromatase pathway." Here, we provide an overview about expression and function of enzymes of the "sulfatase pathway," particularly steroid sulfatase (STS) that activates estrogens and estrogen sulfotransferase (SULT1E1) that converts active estrone (E1) and other estrogens to their inactive sulfates. High expression of STS and low expression of SULT1E1 will increase levels of active estrogens in malignant tumor cells leading to the stimulation of cell proliferation and cancer progression. Therefore, blocking the "sulfatase pathway" by STS inhibitors may offer an attractive strategy to reduce levels of active estrogens. STS inhibitors either applied in combination with aromatase inhibitors or as novel, dual aromatase-steroid sulfatase inhibiting drugs are currently under investigation. Furthermore, STS inhibitors are also suitable as enzyme-based cancer imaging agents applied in the biomedical imaging technique positron emission tomography (PET) for cancer diagnosis.
Collapse
Affiliation(s)
- Lena Secky
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Robert Zeillinger
- Ludwig Boltzmann Cluster Translational Oncology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|