1
|
Oliver MK. African cichlid fishes: morphological data and taxonomic insights from a genus-level survey of supraneurals, pterygiophores, and vertebral counts (Ovalentaria, Blenniiformes, Cichlidae, Pseudocrenilabrinae). Biodivers Data J 2024; 12:e130707. [PMID: 39464263 PMCID: PMC11512106 DOI: 10.3897/bdj.12.e130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background The iconic freshwater cichlid fishes (Cichlidae) comprise about 1750 validly named species and hundreds more that are known, but not yet described and named. Cichlids are an important source of protein for millions of people on several continents, are model organisms in studies of evolution, speciation, ecology, development, behaviour and physiology and are popular as aquarium fishes. Yet, comparative studies of cichlid internal anatomy are rare. Even their osteology has not been taxonomically surveyed. The cichlid postcranial skeleton has been especially neglected. New information Here, I provide the first survey in cichlids of the considerable variation in numbers of vertebrae, supraneurals and dorsal- and anal-fin supports (pterygiophores), as well as the patterns with which the pterygiophores insert between the neural or haemal spines. The study includes some 1700 specimens of nearly 400 cichlid species. Focusing on the largest subfamily, the African cichlids or Pseudocrenilabrinae, the survey furnishes data from species in all but one of its 166 genera. Limited data from species in the other cichlid subfamilies (Etroplinae, Ptychochrominae and Cichlinae) and from the related leaffishes, Polycentridae, are also presented. Key examples of pterygiophore insertion patterns from throughout the range of variation are illustrated and discussed. Detailed analytical tables and all raw data are provided in supplementary files.A bizarre specialisation in Cyprichromis is noted, evidently for the first time. Uniquely in this Lake Tanganyikan genus, five to seven anal pterygiophores are abdominal in position, located anterior to the anal fin and inserting toward or between successive pairs of pleural ribs.Taxonomic changes: The most speciose tribe of African cichlids, currently known as Haplochromini, is correctly called Pseudocrenilabrini. Based chiefly on the molecular phylogenetic findings of other workers, I propose four pseudocrenilabrine subtribes, one occurring in rivers and three endemic to Lake Malawi. I also re-assign the Lake Tanganyikan tribe Tropheini as another subtribe of Pseudocrenilabrini, in line with numerous molecular studies placing tropheines firmly within this tribe. The remaining genera of Pseudocrenilabrini remain incertae sedis in this tribe pending clarification of their phylogenetic relationships.The character complex here surveyed is a promising source of taxonomically and phylogenetically informative characteristics distinguishing or uniting cichlid taxa at multiple hierarchical levels, from species through subfamily. This reference set of novel character data can also provide information for palaeontological studies of African cichlids. These attributes are skeletal features potentially available for study in well preserved fossils and may help determine their correct taxonomic placement.
Collapse
Affiliation(s)
- Michael K. Oliver
- Yale Peabody Museum of Natural History, New Haven, United States of AmericaYale Peabody Museum of Natural HistoryNew HavenUnited States of America
| |
Collapse
|
2
|
Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. BIOLOGY 2021; 10:biology10080797. [PMID: 34440029 PMCID: PMC8389663 DOI: 10.3390/biology10080797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
Collapse
|
3
|
Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int J Parasitol 2020; 50:471-486. [PMID: 32277985 DOI: 10.1016/j.ijpara.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Lake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites' lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north-south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.
Collapse
|
4
|
Koblmüller S, Zangl L, Börger C, Daill D, Vanhove MPM, Sturmbauer C, Sefc KM. Only true pelagics mix: comparative phylogeography of deepwater bathybatine cichlids from Lake Tanganyika. HYDROBIOLOGIA 2018; 832:93-103. [PMID: 30880831 PMCID: PMC6394743 DOI: 10.1007/s10750-018-3752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 05/15/2023]
Abstract
In the absence of dispersal barriers, species with great dispersal ability are expected to show little, if at all, phylogeographic structure. The East African Great Lakes and their diverse fish faunas provide opportunities to test this hypothesis in pelagic fishes, which are presumed to be highly mobile and unrestricted in their movement by physical barriers. Here, we address the link between panmixis and pelagic habitat use by comparing the phylogeographic structure among four deepwater cichlid species of the tribe Bathybatini from Lake Tanganyika. We show that the mitochondrial genealogies (based on the most variable part or the control region) of the four species are very shallow (0.8-4% intraspecific divergence across entire distribution ranges) and that all species experienced recent population growth. A lack of phylogeographic structure in the two eupelagic species, Bathybates fasciatus and B. leo, was consistent with expectations and with findings in other pelagic cichlid species. Contrary to expectations, a clear phylogeographic structure was detected in the two benthopelagic species, B. graueri and Hemibates stenosoma. Differences in genetic diversity between eupelagic and benthopelagic species may be due to differences in their dispersal propensity, mediated by their respective predatory niches, rather than precipitated by external barriers to dispersal.
Collapse
Affiliation(s)
- Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Května 8, 603 65 Brno, Czech Republic
| | - Lukas Zangl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christine Börger
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Daniel Daill
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Consultants in Aquatic Ecology and Engineering – blattfisch e.U., Gabelsbergerstraße 7, 4600 Wels, Austria
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 34 Brno, Czech Republic
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
5
|
Kmentová N, Gelnar M, Mendlová M, Van Steenberge M, Koblmüller S, Vanhove MPM. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sci Rep 2016; 6:39605. [PMID: 28004766 PMCID: PMC5177900 DOI: 10.1038/srep39605] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022] Open
Abstract
Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake's other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Monika Mendlová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten Van Steenberge
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity &Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
6
|
Kmentová N, Gelnar M, Koblmüller S, Vanhove MPM. Deep-water parasite diversity in Lake Tanganyika: description of two new monogenean species from benthopelagic cichlid fishes. Parasit Vectors 2016; 9:426. [PMID: 27488497 PMCID: PMC4972994 DOI: 10.1186/s13071-016-1696-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lake Tanganyika is the world’s second deepest lake. Its diverse cichlid assemblage offers a unique opportunity for studying a deep-water host-parasite model in freshwater. Low host specificity and a broad host range including representatives of the Bathybatini tribe in the only monogenean parasite described from this habitat, Cichlidogyrus casuarinus Pariselle, Muterezi Bukinga & Vanhove, 2015 suggest a link between lower specificity and lower host density. Conversely, high host specificity and species richness are reported for monogeneans of the lake’s littoral cichlids. We further investigated whether the deep-water environment in Lake Tanganyika is really monogenean species-depauperate by investigating the monogenean fauna of Trematocara unimaculatum (a representative of the tribe Trematocarini, the sister lineage of the Bathybatini) and Benthochromis horii, a member of the tribe Benthochromini, found in the same deep-water habitat as the already known hosts of C. casuarinus. Methods Sclerotised structures of the collected monogenean individuals were characterised morphologically using light microscopy and morphometrics. Results Both examined cichlid species are infected by a single monogenean species each, which are new to science. They are described as Cichlidogyrus brunnensis n. sp., infecting T. unimaculatum, and Cichlidogyrus attenboroughi n. sp., parasitising on B. horii. Diagnostic characteristics include the distal bifurcation of the accessory piece in C. brunnensis n. sp. and the combination of long auricles and no heel in C. attenboroughi n. sp. In addition C. brunnensis n. sp. does not resemble C. casuarinus, the only species of Cichlidogyrus thus far reported from the Bathybatini. Also Cichlidogyrus attenboroughi n. sp. does not resemble any of the monogenean species documented from the pelagic zone of the lake and is among the few described species of Cichlidogyrus without heel. Conclusions As two new and non-resembling Cichlidogyrus species are described from T. unimaculatum and B. horii, colonisation of the deep-water habitat by more than one morphotype of Cichlidogyrus is evident. Based on morphological comparisons with previously described monogenean species, parasite transfers with the littoral zone are possible. Therefore, parasites of pelagic cichlids in the lake do not seem to only mirror host phylogeny and the evolutionary history of this host-parasite system merits further attention.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000, Leuven, Belgium.,Present address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium
| |
Collapse
|
7
|
Takahashi T, Sota T. A robust phylogeny among major lineages of the East African cichlids. Mol Phylogenet Evol 2016; 100:234-242. [PMID: 27068840 DOI: 10.1016/j.ympev.2016.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Abstract
The huge monophyletic group of the East African cichlid radiations (EAR) consists of thousands of species belonging to 12-14 tribes; the number of tribes differs among studies. Many studies have inferred phylogenies of EAR tribes using various genetic markers. However, these phylogenies partly contradict one another and can have weak statistic support. In this study, we conducted maximum-likelihood (ML) phylogenetic analyses using restriction site-associated DNA (RAD) sequences and propose a new robust phylogenetic hypothesis among Lake Tanganyika cichlid fishes, which cover most EAR tribes. Data matrices can vary in size and contents depending on the strategies used to process RAD sequences. Therefore, we prepared 23 data matrices with various processing strategies. The ML phylogenies inferred from 15 large matrices (2.0×10(6) to 1.1×10(7) base pairs) resolved every tribe as a monophyletic group with 100% bootstrap support and shared the same topology regarding relationships among the tribes. Most nodes among the tribes were supported by 100% bootstrap values, and the bootstrap support for the other node varied among the 15 ML trees from 70% to 100%. These robust ML trees differ partly in topology from those in earlier studies, and these phylogenetic relationships have important implications for the tribal classification of EAR.
Collapse
Affiliation(s)
- Tetsumi Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan.
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Breman FC, Loix S, Jordaens K, Snoeks J, Van Steenberge M. Testing the potential of DNA barcoding in vertebrate radiations: the case of the littoral cichlids (Pisces, Perciformes, Cichlidae) from Lake Tanganyika. Mol Ecol Resour 2016; 16:1455-1464. [DOI: 10.1111/1755-0998.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Floris C. Breman
- Biology Department; Royal Museum for Central Africa; Leuvensesteenweg 13 B-3080 Tervuren Belgium
| | - Sara Loix
- Laboratory of Biodiversity and Evolutionary Genomics; KU Leuven; Charles Debériotstraat 32 B-3000 Leuven Belgium
| | - Kurt Jordaens
- Biology Department; Royal Museum for Central Africa; Leuvensesteenweg 13 B-3080 Tervuren Belgium
| | - Jos Snoeks
- Biology Department; Royal Museum for Central Africa; Leuvensesteenweg 13 B-3080 Tervuren Belgium
- Laboratory of Biodiversity and Evolutionary Genomics; KU Leuven; Charles Debériotstraat 32 B-3000 Leuven Belgium
| | - Maarten Van Steenberge
- Biology Department; Royal Museum for Central Africa; Leuvensesteenweg 13 B-3080 Tervuren Belgium
- Laboratory of Biodiversity and Evolutionary Genomics; KU Leuven; Charles Debériotstraat 32 B-3000 Leuven Belgium
- Institute of Zoology; University of Graz; Universitätsplatz 2 8010 Graz Austria
- Operational Directorate Taxonomy and Phylogeny; Royal Belgian Institute of Natural Sciences; Vautierstraat 29 1000 Brussels Belgium
| |
Collapse
|
9
|
Kavembe GD, Kautt AF, Machado-Schiaffino G, Meyer A. Eco-morphological differentiation in Lake Magadi tilapia, an extremophile cichlid fish living in hot, alkaline and hypersaline lakes in East Africa. Mol Ecol 2016; 25:1610-25. [DOI: 10.1111/mec.13461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/01/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Geraldine D. Kavembe
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- Department of Biology; School of Pure and Applied Sciences; South Eastern Kenya University; P. O. Box 170 90200 Kitui Kenya
| | - Andreas F. Kautt
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- International Max Planck Research School for Organismal Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Gonzalo Machado-Schiaffino
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
- International Max Planck Research School for Organismal Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
10
|
Schneider K, Koblmüller S, Sefc KM. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test. Methods Ecol Evol 2015; 7:358-368. [PMID: 27066216 PMCID: PMC4824276 DOI: 10.1111/2041-210x.12490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Abstract
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis.With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria ; Department of Systematic Botany and Geobotany, Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
11
|
Weiss JD, Cotterill FPD, Schliewen UK. Lake Tanganyika--a 'melting pot' of ancient and young cichlid lineages (Teleostei: Cichlidae)? PLoS One 2015; 10:e0125043. [PMID: 25928886 PMCID: PMC4415804 DOI: 10.1371/journal.pone.0125043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/08/2015] [Indexed: 11/19/2022] Open
Abstract
A long history of research focused on the East Africa cichlid radiations (EAR) revealed discrepancies between mtDNA and nuclear phylogenies, suggesting that interspecific hybridisation may have been significant during the radiation of these fishes. The approximately 250 cichlid species of Lake Tanganyika have their roots in a monophyletic African cichlid assemblage, but controversies remain about the precise phylogenetic origin and placement of different lineages and consequently about L. Tanganyika colonization scenarios. 3312 AFLP loci and the mitochondrial ND2 gene were genotyped for 91 species representing almost all major lacustrine and riverine haplotilapiine east African cichlid lineages with a focus on L. Tanganyika endemics. Explicitly testing for the possibility of ancient hybridisation events, a comprehensive phylogenetic network hypothesis is proposed for the origin and diversification of L. Tanganyika cichlids. Inference of discordant phylogenetic signal strongly suggests that the genomes of two endemic L. Tanganyika tribes, Eretmodini and Tropheini, are composed of an ancient mixture of riverine and lacustrine lineages. For the first time a strong monophyly signal of all non-haplochromine mouthbrooding species endemic to L. Tanganyika (“ancient mouthbrooders”) was detected. Further, in the genomes of early diverging L. Tanganyika endemics Trematocarini, Bathybatini, Hemibatini and Boulengerochromis genetic components of other lineages belonging to the East African Radiation appear to be present. In combination with recent palaeo-geological results showing that tectonic activity in the L. Tanganyika region resulted in highly dynamic and heterogeneous landscape evolution over the Neogene and Pleistocene, the novel phylogenetic data render a single lacustrine basin as the geographical cradle of the endemic L. Tanganyika cichlid lineages unlikely. Instead a scenario of a pre-rift origin of several independent L. Tanganyika precursor lineages which diversified in ancient rivers and precursor lakes and then amalgamated in the extant L. Tanganyika basin is put forward as an alternative: the 'melting pot Tanganyika' hypothesis.
Collapse
Affiliation(s)
- Juliane D. Weiss
- Department of Ichthyology, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany
| | - Fenton P. D. Cotterill
- Geoecodynamics Research Hub, c/o Department of Botany and Zoology, University of Stellenbosch, Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Ulrich K. Schliewen
- Department of Ichthyology, Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany
- * E-mail:
| |
Collapse
|
12
|
Kirchberger PC, Sefc KM, Sturmbauer C, Koblmüller S. Outgroup effects on root position and tree topology in the AFLP phylogeny of a rapidly radiating lineage of cichlid fish. Mol Phylogenet Evol 2014; 70:57-62. [PMID: 24055738 PMCID: PMC3842234 DOI: 10.1016/j.ympev.2013.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Phylogenetic analyses of rapid radiations are particularly challenging as short basal branches and incomplete lineage sorting complicate phylogenetic inference. Multilocus data of presence-absence polymorphisms such as obtained by AFLP genotyping overcome some of the difficulties, but also present their own intricacies. Here we analyze >1000 AFLP markers to address the evolutionary history of the Limnochromini, a cichlid fish lineage endemic to Lake Tanganyika, and to test for potential effects of outgroup composition on tree topology. The data support previous mitochondrial evidence on the tribe's taxonomy by confirming the polyphyly of the genus Limnochromis and - in contradiction to a recent taxonomic revision - nesting the genus Greenwoodochromis within the Limnochromini. Species relationships suggest that ecological segregation occurred during the rapid basal radiation of the Limnochromini. The large phylogenetic distance between candidate outgroup taxa and the Limnochromini radiation caused random outgroup effects. Bootstrap support for ingroup nodes was lower in outgroup-rooted than in midpoint-rooted trees, and root positions and ingroup tree topologies varied in response to the composition of the outgroup. These observations suggest that the predisposition for homoplastic evolution makes AFLP-based phylogenetic analyses particularly susceptible to random biases introduced by too-distant outgroup taxa.
Collapse
Affiliation(s)
| | | | | | - Stephan Koblmüller
- Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
13
|
Maan ME, Sefc KM. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Semin Cell Dev Biol 2013; 24:516-28. [PMID: 23665150 PMCID: PMC3778878 DOI: 10.1016/j.semcdb.2013.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
Abstract
Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity.
Collapse
Affiliation(s)
- Martine E. Maan
- University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Kristina M. Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|