1
|
Choi I, Ahn GY, Kim ES, Hwang SH, Park HJ, Yoon S, Lee J, Cho Y, Nam JH, Choi SW. Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription. NANO LETTERS 2023; 23:7897-7905. [PMID: 37435905 DOI: 10.1021/acs.nanolett.3c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
A new type of microfluidic bioreactor with fibrous micromixers for the ingredient mixing and a long macrochannel for the in vitro transcription reaction was fabricated for the continuous production of mRNA. The diameter of the fibrous microchannels in the micromixers was tuned by using an electrospun microfibrous disc with different microfiber diameters. The micromixer with a larger diameter of fibrous microchannels exhibited a better mixing performance than the others. The mixing efficiency was increased to 0.95 while the mixture was passed through the micromixers, suggesting complete mixing. To demonstrate the continuous production of mRNA, the ingredients for in vitro transcription were introduced into the perfluoropolyether microfluidic bioreactor. The mRNA synthesized by the microfluidic bioreactor had the same sequence and in vitro/in vivo performances as those prepared by the bulk reaction. The continuous reaction in the microfluidic bioreactor with efficient mixing performance can be used as a powerful platform for various microfluidic reactions.
Collapse
Affiliation(s)
- Inseong Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Guk-Young Ahn
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Eun Seo Kim
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Se Hee Hwang
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
2
|
Barrington H, Dickinson A, McGuire J, Yan C, Reid M. Computer Vision for Kinetic Analysis of Lab- and Process-Scale Mixing Phenomena. Org Process Res Dev 2022; 26:3073-3088. [PMID: 36437899 PMCID: PMC9680030 DOI: 10.1021/acs.oprd.2c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/06/2022]
Abstract
A software platform for the computer vision-enabled analysis of mixing phenomena of relevance to process scale-up is described. By bringing new and known time-resolved mixing metrics under one platform, hitherto unavailable comparisons of pixel-derived mixing metrics are exemplified across non-chemical and chemical processes. The analytical methods described are applicable using any camera and across an appreciable range of reactor scales, from development through to process scale-up. A case study in nucleophilic aromatic substitution run on a 5 L scale in a stirred tank reactor shows how camera and offline concentration analyses can be correlated. In some cases, it can be shown that camera data hold the power to predict reaction progress.
Collapse
Affiliation(s)
- Henry Barrington
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Royal
College Building 204 George Street, Glasgow G1 1XW, U.K.
| | - Alan Dickinson
- Colorants
Technology Centre, FUJIFILM Imaging Colorants, Earls Road, Grangemouth FK3 8XG, U.K.
| | - Jake McGuire
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Royal
College Building 204 George Street, Glasgow G1 1XW, U.K.
| | - Chunhui Yan
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Royal
College Building 204 George Street, Glasgow G1 1XW, U.K.
| | - Marc Reid
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Royal
College Building 204 George Street, Glasgow G1 1XW, U.K.
| |
Collapse
|
3
|
Chowdhury AFMA, Islam R, Alam A, Matsumoto M, Yamauti M, Carvalho RM, Sano H. Variable Smear Layer and Adhesive Application: The Pursuit of Clinical Relevance in Bond Strength Testing. Int J Mol Sci 2019; 20:ijms20215381. [PMID: 31671751 PMCID: PMC6861976 DOI: 10.3390/ijms20215381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
The removal or modification of smear layers that cover the dentin is critical to allow the penetration of adhesive molecules and to ensure a strong bond between resin and dentin. Aiming to establish a model for clinically-relevant dentin-bond testing, we evaluated the effects of smear layers created by abrasives having similar coarseness (180-grit SiC paper; fine-grit diamond bur) and application modes (single application; double application) on the microtensile bond strengths (µTBS) of two currently available universal adhesives (G-Premio Bond; Scotchbond Universal Adhesive) and a two-step self-etch adhesive (Clearfil Megabond 2). Sixty extracted human third molars were used for the μTBS test. Data were analyzed by three-way ANOVA and Tukey’s test (α = 0.05). Fracture modes were determined using stereomicroscopy. An additional 24 third molars were prepared for observation of the resin–dentin interface by TEM and adhesive-smear layer interaction by SEM. μTBS was significantly affected by the adhesives and their application modes (p < 0.001), implying that the double application of universal adhesives should be recommended to improve their performance. The effect of smear layers was not significant (p > 0.05), indicating that 180-grit SiC papers could be used to prepare dentin as a substitute for fine-grit diamond burs for dentin-bond testing in laboratory settings.
Collapse
Affiliation(s)
- Abu Faem Mohammad Almas Chowdhury
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Rafiqul Islam
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Arefin Alam
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Mariko Matsumoto
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Monica Yamauti
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Ricardo Marins Carvalho
- Department of Oral Biological and Medical Sciences, Division of Biomaterials, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Hidehiko Sano
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| |
Collapse
|
4
|
Werner Hlawitschka M, Schäfer J, Jöckel L, Hummel M, Garth C, Bart HJ. CFD Simulation and Visualization of Reactive Bubble Columns. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jan Schäfer
- Chair of Separation Science and Technology, Technische Universität Kaiserslautern
| | - Lisa Jöckel
- Computational Topology Group, Technische Universität Kaiserslautern
| | - Mathias Hummel
- Computational Topology Group, Technische Universität Kaiserslautern
| | - Christoph Garth
- Computational Topology Group, Technische Universität Kaiserslautern
| | - Hans-Jörg Bart
- Chair of Separation Science and Technology, Technische Universität Kaiserslautern
| |
Collapse
|
5
|
Zhou W, Zhao H, Gao J, Meng X, Wu S, Qin Y. Influence of a reagents addition strategy on the Fenton oxidation of rhodamine B: control of the competitive reaction of ·OH. RSC Adv 2016. [DOI: 10.1039/c6ra20242j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microlevel competitive reactions of ·OH could be regulated by applying a macrolevel addition strategy of the Fenton reagents.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Haiqian Zhao
- School of Civil Engineering & Architecture
- Northeast Petroleum University
- Daqing 163318
- P. R. China
| | - Jihui Gao
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Shaohua Wu
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Yukun Qin
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| |
Collapse
|
6
|
Kinetics and Product Selectivity (Yield) of Second Order Competitive Consecutive Reactions in Fed-Batch Reactor and Plug Flow Reactor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/591546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This literature compares the performance of second order competitive consecutive reaction in Fed-Batch Reactor with that in continuous Plug Flow Reactor. In a kinetic sense, this simulation study aims to develop a case for continuous Plug Flow Reactor in pharmaceutical, fine chemical, and related other chemical industries. MATLAB is used to find solutions for the differential equations. The simulation results show that, for certain cases of nonelementary scenario, product selectivity is higher in Plug Flow Reactor than Fed-Batch Reactor despite the fact that it is the same in both the reactors for elementary reaction. The effect of temperature and concentration gradients is beyond the scope of this literature.
Collapse
|
7
|
The Effects of Mixing, Reaction Rates, and Stoichiometry on Yield for Mixing Sensitive Reactions—Part II: Design Protocols. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2012. [DOI: 10.1155/2012/654321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Competitive-consecutive and competitive-parallel reactions are both mixing sensitive reactions where the yield of desired product depends on how fast the reactants are brought together. Recent experimental results have suggested that the magnitude of the mixing effect may depend strongly on the stoichiometry of the reactions. To investigate this, a 1D, dimensionless, reaction-diffusion model was developed at the micromixing scale, yielding a single general Damköhler number. Dimensionless reaction rate ratios were derived for both reaction schemes. A detailed investigation of the effects of initial mixing condition (striation thickness), dimensionless reaction rate ratio, and reaction stoichiometry on the yield of desired product showed that the stoichiometry has a considerable effect on yield. All three variables were found to interact strongly. Model results for 12 stoichiometries are used to determine the mixing scale and relative rate ratio needed to achieve a specified yield for each reaction scheme. The results show that all three variables need to be considered when specifying reactors for mixing sensitive reactions.
Collapse
|