1
|
Korycińska J, Bulantová J, Horák P, Dzika E. Molecular identification of Trichobilharzia species in recreational waters in North-Eastern Poland. PeerJ 2024; 12:e17598. [PMID: 39011383 PMCID: PMC11249002 DOI: 10.7717/peerj.17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
Background In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. Methodology The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. Results The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. Conclusions Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.
Collapse
Affiliation(s)
- Joanna Korycińska
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ewa Dzika
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Schols R, Smitz N, Vanderheyden A, Huyse T. Expanding the swimmer's itch pool of the Benelux: a first record of the neurotropic Trichobilharzia regenti and potential link to human infection. Parasit Vectors 2024; 17:126. [PMID: 38481352 PMCID: PMC10938770 DOI: 10.1186/s13071-024-06218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Swimmer's itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous for their role in swimmer's itch cases. These parasites infect waterfowl as a final host, but incidental infections by cercariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis. METHODS Following a reported case of swimmer's itch in Kampenhout in 2022 (Belgium), the transmission site consisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey. RESULTS Six snail species were collected, including the widespread Ampullaceana balthica, a well-known intermediate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identification, respectively. CONCLUSIONS The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium.
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, Kortrijk, Belgium.
| | - Nathalie Smitz
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium
| | - Ann Vanderheyden
- BopCo, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Tine Huyse
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
3
|
Helmer N, Blatterer H, Hörweg C, Reier S, Sattmann H, Schindelar J, Szucsich NU, Haring E. First Record of Trichobilharzia physellae (Talbot, 1936) in Europe, a Possible Causative Agent of Cercarial Dermatitis. Pathogens 2021; 10:pathogens10111473. [PMID: 34832628 PMCID: PMC8619437 DOI: 10.3390/pathogens10111473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Several species of avian schistosomes are known to cause dermatitis in humans worldwide. In Europe, this applies above all to species of the genus Trichobilharzia. For Austria, a lot of data are available on cercarial dermatitis and on the occurrence of Trichobilharzia, yet species identification of trematodes in most cases is doubtful due to the challenging morphological determination of cercariae. During a survey of trematodes in freshwater snails, we were able to detect a species in the snail Physella acuta (Draparnaud, 1805) hitherto unknown for Austria, Trichobilharzia physellae; this is also the first time this species has been reported in Europe. Species identification was performed by integrative taxonomy combining morphological investigations with molecular genetic analyses. The results show a very close relationship between the parasite found in Austria and North American specimens (similarity found in CO1 ≥99.57%). Therefore, a recent introduction of T. physellae into Europe can be assumed.
Collapse
Affiliation(s)
- Nikolaus Helmer
- Central Research Laboratories, Natural History Museum Vienna, 1010 Vienna, Austria; (S.R.); (J.S.); (N.U.S.); (E.H.)
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
- Correspondence:
| | - Hubert Blatterer
- Department of Water Management, Office of the State Government of Upper Austria, 4020 Linz, Austria;
| | - Christoph Hörweg
- 3rd Zoological Department, Natural History Museum Vienna, 1010 Vienna, Austria; (C.H.); (H.S.)
| | - Susanne Reier
- Central Research Laboratories, Natural History Museum Vienna, 1010 Vienna, Austria; (S.R.); (J.S.); (N.U.S.); (E.H.)
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
- 1st Zoological Department, Natural History Museum Vienna, 1010 Vienna, Austria
| | - Helmut Sattmann
- 3rd Zoological Department, Natural History Museum Vienna, 1010 Vienna, Austria; (C.H.); (H.S.)
| | - Julia Schindelar
- Central Research Laboratories, Natural History Museum Vienna, 1010 Vienna, Austria; (S.R.); (J.S.); (N.U.S.); (E.H.)
| | - Nikolaus U. Szucsich
- Central Research Laboratories, Natural History Museum Vienna, 1010 Vienna, Austria; (S.R.); (J.S.); (N.U.S.); (E.H.)
| | - Elisabeth Haring
- Central Research Laboratories, Natural History Museum Vienna, 1010 Vienna, Austria; (S.R.); (J.S.); (N.U.S.); (E.H.)
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
4
|
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res 2018; 117:3881-3895. [PMID: 30302587 DOI: 10.1007/s00436-018-6095-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 12800, Prague 2, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Marszewska A, Cichy A, Heese T, Żbikowska E. The real threat of swimmers' itch in anthropogenic recreational water body of the Polish Lowland. Parasitol Res 2016; 115:3049-56. [PMID: 27083184 PMCID: PMC4958134 DOI: 10.1007/s00436-016-5060-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 11/11/2022]
Abstract
After numerous reports the local press about the “stinging water” in created on the Dzierżęcinka River—Water Valley reservoir and recognizing in bathers the symptoms of swimmers’ itch, environmental study on the presence of bird schistosome larvae in snail hosts was conducted. Snails belonging to Lymnaeidae and Planorbidae were collected at two sites: (i) part of anthropogenic reservoir (192 individuals) and (ii) the river part (37 individuals). Higher prevalence of Digenea was observed in snail populations living in Water Valley (29.8 %) compared to Dzierżęcinka River (21.3 %). The larvae of bird schistosomes were recorded in both localities in 1.8 % of collected snails. The prevalence of bird schistosomes reached 2.9 % in Planorbarius corneus, 2.8 % in Radix auricularia, and 5.9 % in Radix balthica/labiata. Laboratory tests have shown that at 19 °C the number of bird schistosome cercariae released from snail hosts significantly exceeded the number of cercariae of other identified Digenea species. It is worth underlining that despite the low prevalence of bird schistosomes, the high number of released cercariae was sufficient to create a real threat of swimmers’ itch in bathers. As indicated by the example presented, anthropogenic reservoirs create excellent conditions for Digenea species including bird schistosomes. In view of the real risk of people using the waters, tests on presence of the parasites in snail hosts should be included to the standard procedure of security control in bathing places.
Collapse
Affiliation(s)
- Anna Marszewska
- Department of Invertebrate Zoology, Faculty of Biology and Environment Protection, Nicolas Copernicus University in Toruń, Toruń, Poland
| | - Anna Cichy
- Department of Invertebrate Zoology, Faculty of Biology and Environment Protection, Nicolas Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Heese
- Department of Environmental Biology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| | - Elżbieta Żbikowska
- Department of Invertebrate Zoology, Faculty of Biology and Environment Protection, Nicolas Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
6
|
Sweazea KL, Simperova A, Juan T, Gadau A, Brant SV, Deviche P, Jarrett C. Pathophysiological responses to a schistosome infection in a wild population of mourning doves ( Zenaida macroura ). ZOOLOGY 2015; 118:386-93. [DOI: 10.1016/j.zool.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 06/06/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
7
|
Christiansen AØ, Olsen A, Buchmann K, Kania PW, Nejsum P, Vennervald BJ. Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitol Res 2015; 115:1027-37. [DOI: 10.1007/s00436-015-4830-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
|