1
|
Theeke LA, Liu Y, Wang S, Luo X, Navia RO, Xiao D, Xu C, Wang K. Plasma Proteomic Biomarkers in Alzheimer's Disease and Cardiovascular Disease: A Longitudinal Study. Int J Mol Sci 2024; 25:10751. [PMID: 39409080 PMCID: PMC11477191 DOI: 10.3390/ijms251910751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The co-occurrence of Alzheimer's disease (AD) and cardiovascular diseases (CVDs) in older adults highlights the necessity for the exploration of potential shared risk factors. A total of 566 adults were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 111 individuals with AD, 383 with mild cognitive impairment (MCI), and 410 with CVD. The multivariable linear mixed model (LMM) was used to investigate the associations of AD and CVD with longitudinal changes in 146 plasma proteomic biomarkers (measured at baseline and the 12-month follow-up). The LMM showed that 48 biomarkers were linked to AD and 46 to CVD (p < 0.05). Both AD and CVD were associated with longitudinal changes in 14 biomarkers (α1Micro, ApoH, β2M, BNP, complement C3, cystatin C, KIM1, NGAL, PPP, TIM1, THP, TFF3, TM, and VEGF), and both MCI and CVD were associated with 12 biomarkers (ApoD, AXL, BNP, Calcitonin, CD40, C-peptide, pM, PPP, THP, TNFR2, TTR, and VEGF), suggesting intricate connections between cognitive decline and cardiovascular health. Among these, the Tamm Horsfall Protein (THP) was associated with AD, MCI, CVD, and APOE-ε4. This study provides valuable insights into shared and distinct biological markers and mechanisms underlying AD and CVD.
Collapse
Affiliation(s)
- Laurie A. Theeke
- Department of Community of Acute and Chronic Care, School of Nursing, The George Washington University, Ashburn, VA 20147, USA;
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Silas Wang
- Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516, USA;
| | - R. Osvaldo Navia
- Department of Medicine and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, MA 02493, USA;
| | - Chun Xu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Kesheng Wang
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, 1601 Greene Street, Columbia, SC 29208, USA
| | | |
Collapse
|
2
|
Kumar Barik A, Mathew C, Sanoop PM, John RV, Adigal SS, Bhat S, Pai KM, Bhandary SV, Devasia T, Upadhya R, Kartha VB, Chidangil S. Protein profile pattern analysis: A multifarious, in vitro diagnosis technique for universal screening. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123944. [PMID: 38056315 DOI: 10.1016/j.jchromb.2023.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Universal health care is attracting increased attention nowadays, because of the large increase in population all over the world, and a similar increase in life expectancy, leading to an increase in the incidence of non-communicable (various cancers, coronary diseases, neurological and old-age-related diseases) and communicable diseases/pandemics like SARS-COVID 19. This has led to an immediate need for a healthcare technology that should be cost-effective and accessible to all. A technology being considered as a possible one at present is liquid biopsy, which looks for markers in readily available samples like body fluids which can be accessed non- or minimally- invasive manner. Two approaches are being tried now towards this objective. The first involves the identification of suitable, specific markers for each condition, using established methods like various Mass Spectroscopy techniques (Surface-Enhanced Laser Desorption/Ionization Mass Spectroscopy (SELDI-MS), Matrix-Assisted Laser Desorption/Ionization (MALDI-MS), etc., immunoassays (Enzyme-Linked Immunoassay (ELISA), Proximity Extension Assays, etc.) and separation methods like 2-Dimensional Polyacrylamide Gel Electrophoresis (2-D PAGE), Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Capillary Electrophoresis (CE), etc. In the second approach, no attempt is made the identification of specific markers; rather an efficient separation method like High-Performance Liquid Chromatography/ Ultra-High-Performance Liquid Chromatography (HPLC/UPLC) is used to separate the protein markers, and a profile of the protein pattern is recorded, which is analysed by Artificial Intelligence (AI)/Machine Learning (MI) methods to derive characteristic patterns and use them for identifying the disease condition. The present report gives a summary of the current status of these two approaches and compares the two in the use of their suitability for universal healthcare.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Clint Mathew
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pavithran M Sanoop
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sujatha Bhat
- Division of Microbiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keerthilatha M Pai
- Department of Dental Surgery, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Stańczykiewicz B, Łuc M, Banach M, Zabłocka A. Cystatins: unravelling the biological implications for neuroprotection. Arch Med Sci 2023; 20:157-166. [PMID: 38414464 PMCID: PMC10895963 DOI: 10.5114/aoms/171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 02/29/2024] Open
Abstract
Cystatins, a family of proteins known for their inhibitory role against cysteine proteases, have garnered significant attention in the field of neurodegeneration. Numerous genetic, experimental, and clinical studies concerning cystatin C suggest it plays an important role in the course of neurodegenerative diseases. Its beneficial effects are associated with cysteine protease inhibition, impact on β-amyloid aggregation, as well as regulation of cell proliferation, autophagy, and apoptosis. Cystatin isolated from chicken egg white, called ovocystatin, has been widely used in medical and pharmaceutical research due to its structural and biological similarities to human cystatin C. This article focuses on the potential use of cystatins, with special emphasis on easily obtained ovocystatin, in the treatment of neurodegenerative diseases, such as dementia. The current evidence on cystatin use has shed light on its mechanisms of action and therapeutic implications for neuroprotection and maintenance of cognitive functions.
Collapse
Affiliation(s)
- Bartłomiej Stańczykiewicz
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Łuc
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
4
|
A machine learning approach to unmask novel gene signatures and prediction of Alzheimer's disease within different brain regions. Genomics 2021; 113:1778-1789. [PMID: 33878365 DOI: 10.1016/j.ygeno.2021.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder whose aetiology is currently unknown. Although numerous studies have attempted to identify the genetic risk factor(s) of AD, the interpretability and/or the prediction accuracies achieved by these studies remained unsatisfactory, reducing their clinical significance. Here, we employ the ensemble of random-forest and regularized regression model (LASSO) to the AD-associated microarray datasets from four brain regions - Prefrontal cortex, Middle temporal gyrus, Hippocampus, and Entorhinal cortex- to discover novel genetic biomarkers through a machine learning-based feature-selection classification scheme. The proposed scheme unraveled the most optimum and biologically significant classifiers within each brain region, which achieved by far the highest prediction accuracy of AD in 5-fold cross-validation (99% average). Interestingly, along with the novel and prominent biomarkers including CORO1C, SLC25A46, RAE1, ANKIB1, CRLF3, PDYN, numerous non-coding RNA genes were also observed as discriminator, of which AK057435 and BC037880 are uncharacterized long non-coding RNA genes.
Collapse
|
5
|
Beecham A, Dong C, Wright CB, Dueker N, Brickman AM, Wang L, DeCarli C, Blanton SH, Rundek T, Mayeux R, Sacco RL. Genome-wide scan in Hispanics highlights candidate loci for brain white matter hyperintensities. NEUROLOGY-GENETICS 2017; 3:e185. [PMID: 28975155 PMCID: PMC5619914 DOI: 10.1212/nxg.0000000000000185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
Objective: To investigate genetic variants influencing white matter hyperintensities (WMHs) in the understudied Hispanic population. Methods: Using 6.8 million single nucleotide polymorphisms (SNPs), we conducted a genome-wide association study (GWAS) to identify SNPs associated with WMH volume (WMHV) in 922 Hispanics who underwent brain MRI as a cross-section of 2 community-based cohorts in the Northern Manhattan Study and the Washington Heights–Inwood Columbia Aging Project. Multiple linear modeling with PLINK was performed to examine the additive genetic effects on ln(WMHV) after controlling for age, sex, total intracranial volume, and principal components of ancestry. Gene-based tests of association were performed using VEGAS. Replication was performed in independent samples of Europeans, African Americans, and Asians. Results: From the SNP analysis, a total of 17 independent SNPs in 7 genes had suggestive evidence of association with WMHV in Hispanics (p < 1 × 10−5) and 5 genes from the gene-based analysis with p < 1 × 10−3. One SNP (rs9957475 in GATA6) and 1 gene (UBE2C) demonstrated evidence of association (p < 0.05) in the African American sample. Four SNPs with p < 1 × 10−5 were shown to affect binding of SPI1 using RegulomeDB. Conclusions: This GWAS of 2 community-based Hispanic cohorts revealed several novel WMH-associated genetic variants. Further replication is needed in independent Hispanic samples to validate these suggestive associations, and fine mapping is needed to pinpoint causal variants.
Collapse
Affiliation(s)
- Ashley Beecham
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Chuanhui Dong
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Clinton B Wright
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Nicole Dueker
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Adam M Brickman
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Liyong Wang
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Charles DeCarli
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Susan H Blanton
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Tatjana Rundek
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Richard Mayeux
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| | - Ralph L Sacco
- John T. McDonald Department of Human Genetics (A.B., L.W., S.H.B., R.L.S.), John P Hussman Institute for Human Genomics (A.B., N.D., L.W., S.H.B.), Evelyn F. McKnight Brain Institute (C.D., C.B.W., T.R., R.L.S.), Department of Neurology (C.D., C.B.W., T.R., R.L.S.), and Department of Epidemiology and Public Health (C.B.W., T.R., R.L.S.), Miller School of Medicine, University of Miami, FL; Gertrude H. Sergievsky Center (A.M.B., R.M.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain (A.M.B., R.M.), and Department of Neurology (A.M.B., R.M.), College of Physicians and Surgeons, Columbia University, New York; and Department of Neurology and Center for Neuroscience (C.D.), University of California at Davis, Sacramento
| |
Collapse
|
6
|
Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, Tomimoto H, Murata M, Oikawa S. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer's disease. Neurol Res 2017; 39:231-238. [PMID: 28107809 DOI: 10.1080/01616412.2017.1281195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common cause of dementia in elderly persons. Since the pathology of AD develops slowly from a preclinical or early phase into a fully expressed clinical syndrome, at the time of diagnosis the disease has been progressing for many years. To facilitate the early diagnosis of AD, we performed protein profiling of blood in patients with mild AD as defined by the Functional Assessment Staging (FAST) scale. METHODS Plasma samples from mild AD patients and healthy controls were analyzed using two-dimensional differential gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF/MS) followed by peptide mass fingerprinting. RESULTS Three downregulated proteins were identified: apolipoprotein A-1, alpha-2-HS-glycoprotein, and afamin. Two proteins, including apolipoprotein A-4 and fibrinogen gamma chain, were upregulated in mild AD patients. DISCUSSION Our results suggest that altered expression levels of these proteins in plasma may yield candidate biomarkers for the early diagnosis of AD. ABBREVIATIONS AD, Alzheimer's disease; FAST, Functional Assessment Staging; 2D-DIGE, two-dimensional differential gel electrophoresis; MALDI-TOF/TOF/MS, matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry; CSF, cerebrospinal fluid; Aβ, amyloid beta; MMSE, Mini Mental State Examination; MRI, magnetic resonance imaging; NINCDS-ADRDA, National Institute for Neurological Diseases and Stroke/Alzheimer's Disease and Related Disorders Association; CHAPS, 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate; DTT, dithiothreitol; SDS-PAGE, SDS-polyacrylamide gel electrophoresis; DIA, differential in-gel analysis; BVA, biological variation analysis; CBB, Coomassie brilliant blue; 2DE, two-dimensional gel electrophoresis; TFA, trifluoroacetic acid; ACTH, adrenocorticotropic hormone; Apo A-1, apolipoprotein A-1; AHSG, alpha-2-HS-glycoprotein; Apo A-4, apolipoprotein A-4; MCI, mild cognitive impairment.
Collapse
Affiliation(s)
- Yuki Kitamura
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Ryoko Usami
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Sahoko Ichihara
- b Graduate School of Regional Innovation Studies , Mie University , Tsu , Japan
| | - Hirotaka Kida
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan
| | - Masayuki Satoh
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan
| | - Hidekazu Tomimoto
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan.,d Department of Neurology , Mie University Graduate School of Medicine , Tsu , Japan
| | - Mariko Murata
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Shinji Oikawa
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| |
Collapse
|
7
|
Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G. Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease. PLoS One 2016; 11:e0150672. [PMID: 26950848 PMCID: PMC4780771 DOI: 10.1371/journal.pone.0150672] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although these markers provide relatively high sensitivity and specificity for early disease detection, they are not suitable for monitor of disease progression. In the present study, we used label-free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS, PEAKS, and Sieve) and compared their results by means of reproducibility and peptide identification, including three different normalization methods. After depletion of high abundant proteins we found that Alzheimer’s disease patients had lower fraction of low-abundance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently, global normalization was found to be less accurate compared to using spiked-in chicken ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in the highest reproducibility and PEAKS was the programs with the highest identification performance. Finally, we successfully verified significantly lower levels (p<0.05) of eight proteins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s disease compared to controls using an antibody-based detection method. These proteins are involved in different biological roles spanning from cell adhesion and migration, to regulation of the synapse and the immune system.
Collapse
Affiliation(s)
- Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Häggmark
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Lönnberg
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Maria Mikus
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lena Kilander
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Luo H, Han G, Wang J, Zeng F, Li Y, Shao S, Song F, Bai Z, Peng X, Wang YJ, Shi X, Lei H. Common Aging Signature in the Peripheral Blood of Vascular Dementia and Alzheimer's Disease. Mol Neurobiol 2015; 53:3596-3605. [PMID: 26099307 DOI: 10.1007/s12035-015-9288-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/03/2015] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most dominant forms of dementia in elderly people. Due to the large overlap between AD and VaD in clinical observations, great controversies exist regarding the distinction and connection between these two types of senile dementia. Here for the first time, we resort to the gene expression pattern of the peripheral blood to compare AD and VaD objectively. In our previous work, we have demonstrated that the dysregulation of gene expression in AD is unique among the examined diseases including neurological diseases, cancer, and metabolic diseases. In this study, we found that the dysregulation of gene expression in AD and VaD is quite similar to each other at both functional and gene levels. Interestingly, the dysregulation started at the early stages of the diseases, namely mild cognitive impairment (MCI) and vascular cognitive impairment (VCI). We have also shown that this signature is distinctive from that of peripheral vascular diseases. Comparison with aging studies revealed that the most profound change in AD and VaD, namely ribosome, is consistent with the accelerated aging scenario. This study may have implications to the common mechanism between AD and VaD.
Collapse
Affiliation(s)
- Hongbo Luo
- Department of Neurology, Lanzhou General Hospital, Lanzhou military Area Command, Lanzhou, Gansu, 730050, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 100053, China
| | - Yuanming Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou military Area Command, Lanzhou, Gansu, 730050, China
| | - Shaoju Shao
- Department of Neurology, Lanzhou General Hospital, Lanzhou military Area Command, Lanzhou, Gansu, 730050, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 100053, China
| | - Xiangqun Shi
- Department of Neurology, Lanzhou General Hospital, Lanzhou military Area Command, Lanzhou, Gansu, 730050, China.
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
9
|
Lam SM, Wang Y, Duan X, Wenk MR, Kalaria RN, Chen CP, Lai MKP, Shui G. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol Aging 2014; 35:2369-81. [PMID: 24684787 PMCID: PMC4099521 DOI: 10.1016/j.neurobiolaging.2014.02.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/22/2013] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
Abstract
Despite its importance as the leading cause of vascular dementia, the primary pathogenic mechanisms in subcortical ischemic vascular dementia (SIVD) have remained elusive. Because of the lack of approved therapeutic agents for SIVD, there is a pressing need to identify novel therapeutic targets. Comparative lipidomic analyses of SIVD and mixed dementia (i.e., SIVD and Alzheimer's disease, MixD) may also confer new insights pertaining to the possible interaction between neurodegenerative and vascular mechanisms in the pathogenesis of dementia. Liquid chromatography coupled to mass spectrometry was used to comprehensively analyze the lipidomes of white and gray matter from the temporal cortex of nondemented controls, SIVD, and MixD subjects. Detailed molecular profiles highlighted the pathologic relevance of gray matter sphingolipid fatty acyl chain heterogeneity in dementia. In addition, the levels of sulfatides and lysobisphosphatidic acids were progressively increased in the temporal cortex gray matter from control to SIVD to MixD. White matter phospholipid profiles indicated possible adaptive mechanisms (i.e., increased unsaturation) to chronic ischemia in SIVD and elevated membrane degradation in MixD.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Department of Biological Sciences, National University of Singapore, Singapore
| | - Yuting Wang
- NGS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Xinrui Duan
- Life Science Institute, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, Singapore
| | - Raj N Kalaria
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:169203. [PMID: 24877062 PMCID: PMC4022117 DOI: 10.1155/2014/169203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
The steady and dramatic increase in the incidence of Alzheimer's disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression.
Collapse
|
11
|
Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis? Neuroscience 2013; 245:26-39. [PMID: 23618758 DOI: 10.1016/j.neuroscience.2013.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
Abstract
Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD.
Collapse
|