1
|
Casseb J, Janini LM, Barros Kanzaki LI, Lopes LR, Paiva AM. Is the human T-cell lymphotropic virus type 2 in the process of endogenization into the human genome? J Virus Erad 2020; 6:100009. [PMID: 33294211 PMCID: PMC7695812 DOI: 10.1016/j.jve.2020.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Human T-cell lymphotropic virus type 2 (HTLV-2) infection has been shown to be endemic among intravenous drug users in parts of North America, Europe and Southeast Asia and in a number of Amerindian populations. Despite a 65% genetic similarity and common host humoral response, the human T-cell lymphotropic viruses type 1 (HTLV-1) and 2 display different mechanisms of host interaction and capacity for disease development. While HTLV-1 pathogenicity is well documented, HTLV-2 etiology in human disease is not clearly established. From an evolutionary point of view, its introduction and integration into the germ cell chromosomes of host species could be considered as the final stage of parasitism and evasion from host immunity. The extraordinary abundance of endogenous viral sequences in all vertebrate species genomes, including the hominid family, provides evidence of this invasion. Some of these gene sequences still retain viral characteristics and the ability to replicate and hence are potentially able to elicit responses from the innate and adaptive host immunity, which could result in beneficial or pathogenic effects. Taken together, this data may indicate that HTLV-2 is more likely to progress towards endogenization as has happened to the human endogenous retroviruses millions of years ago. Thus, this intimate association (HTLV-2/human genome) may provide protection from the immune system with better adaptation and low pathogenicity.
Collapse
Affiliation(s)
- Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil
| | - Luiz Mario Janini
- Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo - Unifesp, Sao Paulo, SP, Brazil
| | - Luis Isamu Barros Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, Faculty of Health. Sciences, University of Brasilia, DF, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo - Unifesp, São Paulo, SP, Brazil
| | - Arthur Maia Paiva
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil.,University Hospital Alberto Antunes / Federal University of Alagoas, Brazil
| |
Collapse
|
2
|
The ESCRT-0 Protein HRS Interacts with the Human T Cell Leukemia Virus Type 2 Antisense Protein APH-2 and Suppresses Viral Replication. J Virol 2019; 94:JVI.01311-19. [PMID: 31597781 DOI: 10.1128/jvi.01311-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
The divergent clinical outcomes of human T cell leukemia virus type 1 (HTLV-1) and HTLV-2 infections have been attributed to functional differences in their antisense proteins. In contrast to HTLV-1 bZIP factor (HBZ), the role of the antisense protein of HTLV-2 (APH-2) in HTLV-2 infection is poorly understood. In previous studies, we identified the endosomal sorting complex required for transport 0 (ESCRT-0) subunit HRS as a novel interaction partner of APH-2 but not HBZ. HRS is a master regulator of endosomal protein sorting for lysosomal degradation and is hijacked by many viruses to promote replication. However, no studies to date have shown a link between HTLVs and HRS. In this study, we sought to characterize the interaction between HRS and APH-2 and to investigate the impact of HRS on the life cycle of HTLV-2. We confirmed a direct specific interaction between APH-2 and HRS and showed that the CC2 domain of HRS and the N-terminal domain of APH-2 mediate their interaction. We demonstrated that HRS recruits APH-2 to early endosomes, possibly furnishing an entry route into the endosomal/lysosomal pathway. We demonstrated that inhibition of this pathway using either bafilomycin or HRS overexpression substantially extends the half-life of APH-2 and stabilizes Tax2B expression levels. We found that HRS enhances Tax2B-mediated long terminal repeat (LTR) activation, while depletion of HRS enhances HTLV-2 production and release, indicating that HRS may have a negative impact on HTLV-2 replication. Overall, our study provides important new insights into the role of the ESCRT-0 HRS protein, and by extension the ESCRT machinery and the endosomal/lysosomal pathway, in HTLV-2 infection.IMPORTANCE While APH-2 is the only viral protein consistently expressed in infected carriers, its role in HTLV-2 infection is poorly understood. In this study, we characterized the interaction between the ESCRT-0 component HRS and APH-2 and explored the role of HRS in HTLV-2 replication. HRS is a master regulator of protein sorting for lysosomal degradation, a feature that is manipulated by several viruses to promote replication. Unexpectedly, we found that HRS targets APH-2 and possibly Tax2B for lysosomal degradation and has an overall negative impact on HTLV-2 replication and release. The negative impact of interactions between HTLV-2 regulatory proteins and HRS, and by extension the ESCRT machinery, may represent an important strategy used by HTLV-2 to limit virus production and to promote persistence, features that may contribute to the limited pathogenic potential of this infection.
Collapse
|
3
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
5
|
Expression of Alternatively Spliced Human T-Cell Leukemia Virus Type 1 mRNAs Is Influenced by Mitosis and by a Novel cis-Acting Regulatory Sequence. J Virol 2015; 90:1486-98. [PMID: 26581997 DOI: 10.1128/jvi.02298-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent. These findings provide a rational explanation for the intermediate-late temporal pattern of expression of the p30tof, p13, and p12/8 mRNAs described in previous studies. All the Rex-dependent mRNAs contained a 75-nucleotide intronic region that increased the nuclear retention and degradation of a reporter mRNA in the absence of other viral sequences. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis revealed that this sequence formed a stable hairpin structure. Cell cycle synchronization experiments indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. These findings indicate a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system. IMPORTANCE HTLV-1 is a complex retrovirus that causes two distinct pathologies termed adult T-cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy in about 5% of infected individuals. Expression of the virus depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of virus expression. The findings reported in this study revealed a novel cis-acting regulatory element and indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. Our results add a layer of complexity to the mechanisms controlling the expression of alternatively spliced HTLV-1 mRNAs and suggest a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system.
Collapse
|
6
|
Rende F, Cavallari I, Andresen V, Valeri VW, D'Agostino DM, Franchini G, Ciminale V. Identification of novel monocistronic HTLV-1 mRNAs encoding functional Rex isoforms. Retrovirology 2015; 12:58. [PMID: 26133546 PMCID: PMC4488940 DOI: 10.1186/s12977-015-0184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background Human T cell leukemia virus type 1 (HTLV-1) gene expression is controlled by the key regulatory proteins Tax and Rex. The concerted action of these proteins results in a two-phase kinetics of viral expression that depends on a time delay between their action. However, it is difficult to explain this delay, as Tax and Rex are produced from the same mRNA. In the present study we investigated whether HTLV-1 may produce novel mRNA species capable of expressing Rex and Tax independently. Findings Results revealed the expression of three alternatively spliced transcripts coding for novel Rex isoforms in infected cell lines and in primary samples from infected patients. One mRNA coded for a Tax isoform and a Rex isoform, and two mRNAs coded for Rex isoforms but not Tax. Functional assays showed that these Rex isoforms exhibit activity comparable to canonic Rex. An analysis of the temporal expression of these transcripts upon ex vivo culture of cells from infected patients and cell lines transfected with a molecular clone of HTLV-1 revealed early expression of the dicistronic tax/rex mRNAs followed by the monocistronic mRNAs coding for Rex isoforms. Conclusion The production of monocistronic HTLV-1 mRNAs encoding Rex isoforms with comparable activity to canonical Rex, but with distinct timing, would support a prolonged duration of Rex function with gradual loss of Tax, and is consistent with the two-phase expression kinetics. A thorough understanding of these regulatory circuits will shed light on the basis of viral latency and provide groundwork to develop strategies for eradicating persistent infections.
Collapse
Affiliation(s)
- Francesca Rende
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| | - Ilaria Cavallari
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| | - Vibeke Andresen
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA. .,Translational Hemato-Oncology Group, Department of Clinical Science, Centre of Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.
| | - Valerio W Valeri
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA. .,Novartis Vaccines Loc., Bellaria Rosia, 53018, Sovicille, SI, Italy.
| | | | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy. .,Istituto Oncologico Veneto-IRCCS, Padua, Italy.
| |
Collapse
|
7
|
Pise-Masison CA, de Castro-Amarante MF, Enose-Akahata Y, Buchmann RC, Fenizia C, Washington Parks R, Edwards D, Fiocchi M, Alcantara LC, Bialuk I, Graham J, Walser JC, McKinnon K, Galvão-Castro B, Gessain A, Venzon D, Jacobson S, Franchini G. Co-dependence of HTLV-1 p12 and p8 functions in virus persistence. PLoS Pathog 2014; 10:e1004454. [PMID: 25375128 PMCID: PMC4223054 DOI: 10.1371/journal.ppat.1004454] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
HTLV-1 orf-I is linked to immune evasion, viral replication and persistence. Examining the orf-I sequence of 160 HTLV-1-infected individuals; we found polymorphism of orf-I that alters the relative amounts of p12 and its cleavage product p8. Three groups were identified on the basis of p12 and p8 expression: predominantly p12, predominantly p8 and balanced expression of p12 and p8. We found a significant association between balanced expression of p12 and p8 with high viral DNA loads, a correlate of disease development. To determine the individual roles of p12 and p8 in viral persistence, we constructed infectious molecular clones expressing p12 and p8 (D26), predominantly p12 (G29S) or predominantly p8 (N26). As we previously showed, cells expressing N26 had a higher level of virus transmission in vitro. However, when inoculated into Rhesus macaques, cells producing N26 virus caused only a partial seroconversion in 3 of 4 animals and only 1 of those animals was HTLV-1 DNA positive by PCR. None of the animals exposed to G29S virus seroconverted or had detectable viral DNA. In contrast, 3 of 4 animals exposed to D26 virus seroconverted and were HTLV-1 positive by PCR. In vitro studies in THP-1 cells suggested that expression of p8 was sufficient for productive infection of monocytes. Since orf-I plays a role in T-cell activation and recognition; we compared the CTL response elicited by CD4+ T-cells infected with the different HTLV-1 clones. Although supernatant p19 levels and viral DNA loads for all four infected lines were similar, a significant difference in Tax-specific HLA.A2-restricted killing was observed. Cells infected with Orf-I-knockout virus (12KO), G29S or N26 were killed by CTLs, whereas cells infected with D26 virus were resistant to CTL killing. These results indicate that efficient viral persistence and spread require the combined functions of p12 and p8.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - R. Cody Buchmann
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dustin Edwards
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Martina Fiocchi
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University in Białystok, Białystok, Poland
| | - Jhanelle Graham
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Jean-Claude Walser
- Evolutionary Biology, Genetic Diversity Centre, University of Basel, Basel, Switzerland
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Batiment Lwoff, Institut Pasteur, Paris, France
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Cachat A, Chevalier SA, Alais S, Ko NL, Ratner L, Journo C, Dutartre H, Mahieux R. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J Virol 2013; 87:13386-96. [PMID: 24089560 PMCID: PMC3838277 DOI: 10.1128/jvi.02758-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023] Open
Abstract
Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that cell-free infection is insensitive to IFN-α, demonstrating that the cytokine does not affect the early stages of the viral cycle. In contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-α treatment in T cells, primary lymphocytes, or 293T cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-α acts during the late stages of infection. We show that IFN-α does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small interfering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by interferon, plays a major role in IFN-α-induced HTLV-1/2 inhibition. These results indicate that IFN-α has a strong repressive effect on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.
Collapse
Affiliation(s)
- Anne Cachat
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sébastien Alain Chevalier
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sandrine Alais
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Nga Ling Ko
- Unité d'Épidémiologie et Physiopathoglogie des Virus Oncogenes, Institut Pasteur, Paris, France
| | - Lee Ratner
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| |
Collapse
|
9
|
Romanelli MG, Diani E, Bergamo E, Casoli C, Ciminale V, Bex F, Bertazzoni U. Highlights on distinctive structural and functional properties of HTLV Tax proteins. Front Microbiol 2013; 4:271. [PMID: 24058363 PMCID: PMC3766827 DOI: 10.3389/fmicb.2013.00271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
Collapse
|
10
|
Forlani G, Abdallah R, Accolla RS, Tosi G. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators. Front Microbiol 2013; 4:234. [PMID: 23986750 PMCID: PMC3749491 DOI: 10.3389/fmicb.2013.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/13/2022] Open
Abstract
The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology, Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | | |
Collapse
|
11
|
Barrios CS, Castillo L, Giam CZ, Wu L, Beilke MA. Inhibition of HIV type 1 replication by human T lymphotropic virus types 1 and 2 Tax proteins in vitro. AIDS Res Hum Retroviruses 2013; 29:1061-7. [PMID: 23464580 DOI: 10.1089/aid.2013.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with HIV-1 and human T-lymphotropic virus type 2 (HTLV-2) coinfections often exhibit a clinical course similar to that seen in HIV-1-infected individuals who are long-term nonprogressors. These findings have been attributed in part to the ability of HTLV-2 to activate production of antiviral chemokines and to downregulate the CCR5 coreceptor on lymphocytes. To further investigate these observations, we tested the ability of recombinant Tax1 and Tax2 proteins to suppress HIV-1 viral replication in vitro. R5-tropic HIV-1 (NLAD8)-infected peripheral blood mononuclear cells (PBMCs) were treated daily with recombinant Tax1 and Tax2 proteins (dosage range 1-100 pM). Culture supernatants were collected at intervals from days 1 to 22 postinfection and assayed for levels of HIV-1 p24 antigen by ELISA. Treatment of PBMCs with Tax2 protein resulted in a significant reduction in HIV-1 p24 antigen levels (p<0.05) at days 10, 14, and 18 postinfection compared to HIV-1-infected or mock-treated PBMCs. This was preceded by the detection of increased levels of CC-chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5 on days 1-7 of infection. Similar, but less robust inhibition was observed in Tax1-treated PBMCs. These results support the contention that Tax1 and Tax2 play a role in generating antiviral responses against HIV-1 in vivo and in vitro.
Collapse
Affiliation(s)
- Christy S. Barrios
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Laura Castillo
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Mark A. Beilke
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Bender C, Rende F, Cotena A, Righi P, Ronzi P, Cavallari I, Casoli C, Ciminale V, Bertazzoni U. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA. Retrovirology 2012; 9:74. [PMID: 22973907 PMCID: PMC3468393 DOI: 10.1186/1742-4690-9-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/18/2012] [Indexed: 01/03/2023] Open
Abstract
Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs) from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.
Collapse
Affiliation(s)
- Cecilia Bender
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|