1
|
Graziani G, Ghezzi D, Boi M, Baldini N, Sassoni E, Cappelletti M, Fedrizzi G, Maglio M, Salamanna F, Tschon M, Martini L, Zaffagnini S, Fini M, Sartori M. Ionized jet deposition of silver nanostructured coatings: Assessment of chemico-physical and biological behavior for application in orthopedics. BIOMATERIALS ADVANCES 2024; 159:213815. [PMID: 38447383 DOI: 10.1016/j.bioadv.2024.213815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.
Collapse
Affiliation(s)
- Gabriela Graziani
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Ghezzi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Marco Boi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Nicola Baldini
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Giorgio Fedrizzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Reparto Chimico degli Alimenti, Via Pietro Fiorini 5, 40127 Bologna, Italy.
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lucia Martini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, 40136 Bologna, Italy.
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
2
|
Vögeling H, Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Dayyoub E, Jedelska J, Brüßler J, Bakowsky U. Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109749. [PMID: 31349520 DOI: 10.1016/j.msec.2019.109749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Catheter related infections are causing one third of all blood stream infections. The mortality of those infections is very high and the gold standard for catheter related blood stream infections (CR-BSI) is still the removal of the catheter and systemic antibiotic therapy. There already exist some approaches to prevent the biofilm formation on catheter material, which are far from ideal. A new strategy to prevent bacterial colonization on catheter surfaces is the application of photodynamic therapy (PDT). Therefor the surface has to be modified with substances that can be activated by light, leading to the production of cell toxic reactive oxygen species (ROS). Only small concentrations of the so called photosensitizer (PS) are necessary, avoiding side effects in human therapy. Furthermore, there is no resistance development in PDT. In this study polyurethane (PUR) surfaces were coated with hypericin nanoformulations, leading to 4.3 log10 reduction in bacterial growth in vitro. The effect could be enhanced by the application of ultrasound. The combination of PDT with ultrasound therapy led to a synergistic effect resulting in a 6.8 log10 reduction of viable counts. This minimal invasive method requires only an optical fibre inserted in the catheter lumen and an ultrasound device. Thus the implementation in daily clinical practice is very simple.
Collapse
Affiliation(s)
- Hendrik Vögeling
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Nikola Plenagl
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | | | - Eyas Dayyoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jarmila Jedelska
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
3
|
New Technology: Heparin and Antimicrobial-Coated Catheters. J Vasc Access 2015; 16 Suppl 9:S48-53. [DOI: 10.5301/jva.5000376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2015] [Indexed: 11/20/2022] Open
Abstract
Although tunneled hemodialysis catheter must be considered the last option for vascular access, it is necessary in some circumstances in the dialysis patient. Thrombosis and infections are the main causes of catheter-related comorbidity. Fibrin sheath, intimately related with the biofilm, is the precipitating factor of this environment, determining catheter patency and patient morbidity. Its association with bacterial overgrowth and thrombosis has led to the search of multiple preventive measures. Among them is the development of catheter coatings to prevent thrombosis and infections. There are two kinds of treatments to cover the catheter surface: antithrombotic and antimicrobial coatings. In nondialysis-related settings, mainly in intensive care units, both have been shown to be efficient in the prevention of catheter-related infection. This includes heparin, silver, chlorhexidine, rifampicine and minocycline. In hemodialysis population, however, few studies on surface-treated catheters have been made and they do not provide evidence that shows complication reduction. The higher effectiveness of coatings in nontunneled catheters may depend on the short average life of these devices. Hemodialysis catheters need to be used over long periods of time and require clinical trials to show effectiveness of coatings over long periods. This also means greater knowledge of biofilm etiopathogeny and fibrin sheath development.
Collapse
|
4
|
Quantification of fibrin in blood thrombi formed in hemodialysis central venous catheters: a pilot study on 43 CVCs. J Vasc Access 2014; 15:278-85. [PMID: 24474517 DOI: 10.5301/jva.5000200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Fibrin deposition and thrombotic occlusion represent a serious cause of access dysfunction in hemodialysis central venous catheters (CVCs). The aim of this work was to define and apply a method for imaging and quantifying fibrin in thrombi formed into the side holes of CVCs. METHODS Forty-three CVCs removed from a cohort of dialyzed patients were analyzed in this pilot study. Hematoxylin and eosin and a modified Carstair's staining were applied on permanent thrombus sections. Fluorescence microscopy and image analysis were performed to quantify the fibrin amount. RESULTS Highly fluorescent areas were invariably associated with fibrin by Carstair's method. The deposition of concentric layers of fibrin and erythrocytes was easily identified by fluorescence microscopy, showing growth features of the thrombus. Fibrin amount in diabetic patients was significantly higher than that in nondiabetic patients with median (interquartile range) values of 51% (47-68%) and 44% (30-54%), respectively (p=0.032). No significant difference in fibrin content was found by grouping data according to catheter type, permanence time, insertion site and dialysis vintage. Higher variability in fibrin values was found in thrombi from CVCs removed after 1-15 days compared with 16-60 days. A trend of an increase in fibrin amount in thrombi was noted according to blood platelet count at CVC insertion. CONCLUSIONS The analytical method presented here proved to be a rapid and effective way for quantifying fibrin content in thrombi formed on CVCs with potential application in future clinical studies.
Collapse
|