1
|
Probst CM, Melo MDFAD, Pavoni DP, Toledo MJDO, Galdino TS, Brandão AA, Britto C, Krieger MA. A new Trypanosoma cruzi genotyping method enables high resolution evolutionary analyses. Mem Inst Oswaldo Cruz 2021; 116:e200538. [PMID: 34468503 PMCID: PMC8405150 DOI: 10.1590/0074-02760200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is an important human pathogen in Latin America with nearly seven million people infected. It has a large degree of genetic diversity, classified into six discrete typing units (DTUs), which probably influences its physiological behavior and clinical manifestations. Several genotyping methods are available, with distinct performance on easiness, cost, resolution and applicability; no method excels in all parameters. OBJECTIVES AND METHODS To devise a molecular method for T. cruzi genotyping, based on polymerase chain reaction (PCR) amplification of a single target with multiple copies in the nuclear genome by large scale sequencing. We have applied this method to 29 T. cruzi isolates, comprising all described DTUs. FINDINGS We were able to classify all samples into sub DTU level with high robustness. Evolutionary relationship between DTUs were ascertained, suggesting that TcIII and TcIV DTUs are non-hybrid, and DTU IV is more similar to the common ancestral. CONCLUSION As the TS-LSS method is based on a single PCR reaction, comprising several copies of the target, it is probably useful for clinical samples, when the amount of DNA is a limiting factor. As large scale sequencing systems become more common, the TS-LSS method can be increasingly applied for T. cruzi genotyping.
Collapse
Affiliation(s)
- Christian Macagnan Probst
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| | | | - Daniela Parada Pavoni
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| | - Max Jean de Ornelas Toledo
- Universidade Estadual de Maringá, Departamento de Ciências da Saúde, Laboratório de Doença de Chagas, Maringá, PR, Brasil
| | - Tainah Silva Galdino
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Adeilton Alves Brandão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Constança Britto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Marco Aurelio Krieger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| |
Collapse
|
2
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
3
|
Sabalette KB, Romaniuk MA, Noé G, Cassola A, Campo VA, De Gaudenzi JG. The RNA-binding protein TcUBP1 up-regulates an RNA regulon for a cell surface-associated Trypanosoma cruzi glycoprotein and promotes parasite infectivity. J Biol Chem 2019; 294:10349-10364. [PMID: 31113862 DOI: 10.1074/jbc.ra118.007123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
The regulation of transcription in trypanosomes is unusual. To modulate protein synthesis during their complex developmental stages, these unicellular microorganisms rely largely on post-transcriptional gene expression pathways. These pathways include a plethora of RNA-binding proteins (RBPs) that modulate all steps of the mRNA life cycle in trypanosomes and help organize transcriptomes into clusters of post-transcriptional regulons. The aim of this work was to characterize an RNA regulon comprising numerous transcripts of trypomastigote-associated cell-surface glycoproteins that are preferentially expressed in the infective stages of the human parasite Trypanosoma cruzi. In vitro and in vivo RNA-binding assays disclosed that these glycoprotein mRNAs are targeted by the small trypanosomatid-exclusive RBP in T. cruzi, U-rich RBP 1 (TcUBP1). Overexpression of a GFP-tagged TcUBP1 in replicative parasites resulted in >10 times up-regulated expression of transcripts encoding surface proteins and in changes in their subcellular localization from the posterior region to the perinuclear region of the cytoplasm, as is typically observed in the infective parasite stages. Moreover, RT-quantitative PCR analysis of actively translated mRNAs by sucrose cushion fractionation revealed an increased abundance of these target transcripts in the polysome fraction of TcUBP1-induced samples. Because these surface proteins are involved in cell adherence or invasion during host infection, we also carried out in vitro infections with TcUBP1-transgenic trypomastigotes and observed that TcUBP1 overexpression significantly increases parasite infectivity. Our findings provide evidence for a role of TcUBP1 in trypomastigote stage-specific gene regulation important for T. cruzi virulence.
Collapse
Affiliation(s)
- Karina B Sabalette
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Griselda Noé
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Vanina A Campo
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
4
|
Signal peptide recognition in Trypanosoma cruzi GP82 adhesin relies on its localization at protein N-terminus. Sci Rep 2019; 9:7325. [PMID: 31086219 PMCID: PMC6513831 DOI: 10.1038/s41598-019-43743-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/30/2019] [Indexed: 11/09/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a dense coat of GPI-anchored virulence factors. T. cruzi GPI-anchored adhesin GP82 is encoded by a repertoire of transcripts containing several in-frame initiation codons located up-stream from that adjacent to the predicted signal peptide (SP). Transfection of T. cruzi epimastigotes with constructs encoding GP82 starting at the SP or from the farthest up-stream methionine confirmed protein expression on the parasite cell surface, comparable to the native GP82. Proteins were fully functional, inducing parasite adhesion to HeLa cells and lysosome mobilization, events required for parasite invasion. Transgenic and native GP82 proteins showed indistinguishable electrophoretic mobility, suggesting similar processing of the SP. Deletion of SP generated a ~72 kDa protein devoid of N-linked oligosaccharides allowing irrefutable identification of GP82 precursor. SP transposition to an internal region of GP82 rendered the signal unrecognizable by the signal peptidase and incapable to direct the nascent protein for ER-membrane association. Altogether our data strongly suggests that GP82 SP fails to function as transmembrane domain and its recognition by the signal peptidase shows strict dependence on the signal localization at protein N-terminus. This report presents the first experimental characterization of the full-length GP82 and its signal peptide.
Collapse
|
5
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
6
|
The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. INFECTION GENETICS AND EVOLUTION 2015; 37:266-74. [PMID: 26640033 DOI: 10.1016/j.meegid.2015.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Trans-sialidase (TS) is a polymorphic protein superfamily described in members of the protozoan genus Trypanosoma. Of the eight TS groups recently described, TS group I proteins (some of which have catalytic activity) are present in the distantly related Trypanosoma brucei and Trypanosoma cruzi phylogenetic clades, whereas other TS groups have only been described in some species belonging to the T. cruzi clade. In the present study we analyzed the repertoire, distribution and phylogenetic relationships of TS genes among species of the T. cruzi clade based on sequence similarity, multiple sequence alignment and tree-reconstruction approaches using TS sequences obtained with the aid of PCR-based strategies or retrieved from genome databases. We included the following representative isolates of the T. cruzi clade from South America: T. cruzi, T. cruzi Tcbat, Trypanosoma cruzi marinkellei, Trypanosoma dionisii, Trypanosoma rangeli and Trypanosoma conorhini. The cloned sequences encoded conserved TS protein motifs Asp-box and VTVxNVxLYNR but lacked the FRIP motif (conserved in TS group I). The T. conorhini sequences were the most divergent. The hybridization patterns of TS probes with chromosomal bands confirmed the abundance of these sequences in species in the T. cruzi clade. Divergence and relationship analysis placed most of the TS sequences in the groups defined in T. cruzi. Further examination of members of TS group II, which includes T. cruzi surface glycoproteins implicated in host cell attachment and invasion, showed that sequences of T. cruzi Tcbat grouped with those of T. cruzi genotype TcI. Our analysis indicates that different members of the T. cruzi clade, with different vertebrate hosts, vectors and pathogenicity, share the extensive expansion and sequence diversification of the TS gene family. Altogether, our results are congruent with the evolutionary history of the T. cruzi clade and represent a contribution to the understanding of the molecular evolution and role of TS proteins in trypanosomes.
Collapse
|
7
|
Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion. PLoS Negl Trop Dis 2015; 9:e0004216. [PMID: 26565791 PMCID: PMC4643927 DOI: 10.1371/journal.pntd.0004216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Background The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. Methodology/ Principal Findings Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. Conclusion/Significance We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection. Trypanosoma cruzi is the etiologic agent of Chagas’ disease, which infects 6–7 million people worldwide, mostly in Latin America. Currently, there are no vaccines available, and the drugs used for treatment are toxic and are not fully effective. To infect mammalian hosts, T. cruzi relies on the ability to invade host cells, replicate intracellularly and spread the infection in different organs of the mammalian host. Knowledge of the structure and function of T. cruzi surface molecules is fundamental to understanding the mechanisms by which the parasite interacts with its host. T. cruzi infective forms engage a repertoire of surface and secreted molecules, some of which are involved in triggering signaling pathways both in the parasite and the host cell, leading to intracellular Ca2+ mobilization, a process essential for parasite internalization. Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), including their genomic distribution, expression and cellular localization. We studied the mechanism of action of TcSMP in host-cell invasion and proposed a triggering role for TcSMP in host-cell lysosome exocytosis during metacyclic internalization. TcSMP genes are conserved among different T. cruzi lineages and share orthologs in other Trypanosoma species. These results suggest that the diversification of TcSMP genes in mammalian trypanosomes occurred after continental drift. In T. cruzi this gene family expanded by gene duplication.
Collapse
|
8
|
Genome mining offers a new starting point for parasitology research. Parasitol Res 2015; 114:399-409. [PMID: 25563615 DOI: 10.1007/s00436-014-4299-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
Collapse
|