1
|
Baek W, Park S, Lee Y, Roh H, Yun CO, Roh TS, Lee WJ. Ethyl Pyruvate Decreases Collagen Synthesis and Upregulates MMP Activity in Keloid Fibroblasts and Keloid Spheroids. Int J Mol Sci 2024; 25:5844. [PMID: 38892032 PMCID: PMC11172307 DOI: 10.3390/ijms25115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-β1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-β1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-β, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.
Collapse
Affiliation(s)
- Wooyeol Baek
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seonghyuk Park
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Youngdae Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Tai Suk Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Jai Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Habault J, Schneider JA, Ha S, Ruoff R, Pereira LD, Puccini J, Ranieri M, Ayasun R, Deng J, Kasper AC, Bar-Sagi D, Wong KK, Zoubeidi A, Claessens F, Wise DR, Logan SK, Kirshenbaum K, Garabedian MJ. A Multivalent Peptoid Conjugate Modulates Androgen Receptor Transcriptional Activity to Inhibit Therapy-resistant Prostate Cancer. Mol Cancer Ther 2023; 22:1166-1181. [PMID: 37486978 PMCID: PMC10592247 DOI: 10.1158/1535-7163.mct-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.
Collapse
Affiliation(s)
- Justine Habault
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey A. Schneider
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel Ruoff
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luiza D. Pereira
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Michela Ranieri
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Ruveyda Ayasun
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiehui Deng
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kwok-Kin Wong
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David R. Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Michael J. Garabedian
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
DU K, Wu X, Ji X, Liang N, Li Z. Early growth response 1 promoted the invasion of glioblastoma multiforme by elevating HMGB1. J Neurosurg Sci 2023; 67:422-430. [PMID: 33297605 DOI: 10.23736/s0390-5616.20.05107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and deadly glioma subtype. Early growth response 1 (EGR1) participates in the progression of several cancer types, but the expression and function of EGR1 in GBM was rarely investigated. METHODS The expressions of EGR1 in GBM were detected with qRT-PCR and immunohistochemistry in 12 pairs of fresh GBM tissues and 116 paraffin-embedded specimens. The patients were divided into high and low EGR1 groups according to the IHC score of EGR1, and the prognostic significances of different groups were evaluated with univariate and multivariate analyses. With in-vitro experiments, we assessed the role of EGR1 in the proliferation and invasion of GBM cells. RESULTS In our study, EGR1 was up-regulated in GBM tissues compared with tumor-adjacent normal tissues. High expression of EGR1 or HMGB1 were unfavorable prognostic biomarkers of GBM. Coexpression of EGR1 and HMGB1 could predict the prognosis of GBM more sensitively. EGR1 facilitated the proliferation and invasion of GBM cells. Moreover, EGR1 promoted the invasion, instead of proliferation, of GBM cells by elevating the expression of HMGB1. CONCLUSIONS ERG1 was a prognostic biomarker of GBM, and ERG1 and HMGB1 synergistically could predict the GBM prognosis more precisely. ERG1 could promote GBM cell invasion by inducing HMGB1 expression.
Collapse
Affiliation(s)
- Kai DU
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaoyou Wu
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaofei Ji
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Nan Liang
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China
| | - Zheng Li
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China -
| |
Collapse
|
5
|
Ramazan ZK, Sarı İ, Yıldırım BG, Güntürk İ, Küçük E, Erşan S, Seydel GŞ. The Evaluation of oxidative stress, 3-nitrotyrosine, and HMGB-1 levels in patients with Wet Type Age-Related Macular Degeneration. J Med Biochem 2021; 41:275-281. [PMID: 36042902 PMCID: PMC9375537 DOI: 10.5937/jomb0-32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Background This study aims to compare serum HMGB-1, 3-nitrotyrosine (3-NT), TAS, TOS, and OSI levels in Wettype Age-Related Macular Degeneration (wAMD) patients and healthy controls to determine the correlation of these parameters with each other. Methods Thirty patients with Wet-type Age-Related Macular Degeneration (wAMD) and 27 healthy adults, as controls were enrolled in the study. We determined the TAS and TOS levels in serum samples of both groups using commercial kits on a microplate reader. Serum HMGB-1 and 3-NT levels were measured with the enzyme-linked immunosorbent assay method. Results HMGB-1 levels were significantly higher in the patient group (137.51 pg/mL, p=0.001), while there was no difference between the two groups in serum 3-NT levels (p=0.428). A statistically significant difference found in the levels of TOS and OSI (p=0.001 and p=0.045, respectively) between the patients and controls, however, no significant difference was observed between the groups in terms of TAS levels (p=0.228). Conclusions Oxidative stress and HMGB-1 levels were increased in wAMD patients and enhanced oxidative stress may be associated with increased tissue necrosis and inflammation. Thus administration of antioxidant treatment in addition to routine therapy should be considered in wAMD.
Collapse
Affiliation(s)
- Zor Kürşad Ramazan
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İsmail Sarı
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Biçer Gamze Yıldırım
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İnayet Güntürk
- Niğde Ömer Halisdemir University, Healthcare Services, Zübeyde Hanım Health Services Vocational High School, Bor Yolu, Niğde, Turkey
| | - Erkut Küçük
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - Serpil Erşan
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Gönül Şeyda Seydel
- Niğde Ömer Halisdemir University School of Medicine Department of Medical Biochemistry, Bor Yolu, Niğde, Turkey
| |
Collapse
|
6
|
Garrido MM, Bernardino RM, Marta JC, Holdenrieder S, Guimarães JT. Tumour markers of prostate cancer: The post-PSA era. Ann Clin Biochem 2021; 59:46-58. [PMID: 34463154 DOI: 10.1177/00045632211041890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although PSA-based prostate cancer (PCa) screening had a positive impact in reducing PCa mortality, it also led to overdiagnosis, overtreatment and to a significant number of unnecessary biopsies. In the post-PSA era, new biomarkers have emerged that can complement the information given by PSA, towards a better cancer diagnostic specificity, and also allow a better estimate of the aggressiveness of the disease and its clinical outcome. That means those markers have the potential to assist the clinician in the decision-making processes, such as whether or not to perform a biopsy, and to make the best treatment choice among the new therapeutic options available, including active surveillance (AS) in lower risk disease. In this article, we will review several of those more recent diagnostic markers (4Kscore®, [-2]proPSA and Prostate Health Index (PHI), SelectMDx®, ConfirmMDx®, Progensa® Prostate Cancer Antigen 3, Mi-Prostate Score, ExoDx™ Prostate Test, the Stockholm-3 test and ERSPC risk calculators) and prognostic markers (OncotypeDX® Genomic Prostate Score, Prolaris®, Decipher® and ProMark®). We will also address some new liquid biopsy approaches - circulating tumour cells and cell-free DNA (cfDNA) - with a potential role in metastatic castration-resistant PCa and will briefly give some future perspectives, mostly outlooking epigenetic markers.
Collapse
Affiliation(s)
- Manuel M Garrido
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.,Department of Laboratory Medicine, 37811Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rui M Bernardino
- Department of Urology, 90463Centro Hospitalar Universitário de Lisboa central, Lisbon, Portugal
| | - José C Marta
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, 14924Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - João T Guimarães
- Department of Clinical Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Garrido MM, Ribeiro RM, Krüger K, Pinheiro LC, Guimarães JT, Holdenrieder S. Relevance of Circulating Nucleosomes, HMGB1 and sRAGE for Prostate Cancer Diagnosis. In Vivo 2021; 35:2207-2212. [PMID: 34182498 DOI: 10.21873/invivo.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Evasion from cell death occurs in prostate cancer (PCa). We verified whether serum levels of cell death markers can have diagnostic value in PCa. PATIENTS AND METHODS A total of 233 men scheduled for prostate biopsy [prostate specific antigen (PSA) level: 2-10 ng/ml] were enrolled. Serum nucleosomes, nucleosomes containing the H3 histone (H3), high mobility group box 1 (HMGB1), and soluble receptor for advanced glycation end products (sRAGE) were analyzed by enzyme immunoassays. RESULTS There were no differences (p>0.05) in nucleosomes, H3, and sRAGE levels between patients with and without PCa or clinically significant PCa (csPCa). HMGB1 had lower levels in PCa patients (p=0.023) and was a predictor of PCa (p=0.047), but not of csPCa (p=0.180). CONCLUSION In patients with critical PSA levels between 2-10 ng/ml, HMGB1 had some diagnostic value for overall PCa detection, but it was not predictive of csPCa. Nucleosomes, H3 and sRAGE did not discriminate between PCa or csPCa and controls.
Collapse
Affiliation(s)
- Manuel M Garrido
- Department of Clinical Pathology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal; .,Department of Laboratory Medicine, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ruy M Ribeiro
- Biomathematics Laboratory, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Kimberly Krüger
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Luís C Pinheiro
- Department of Urology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.,Department of Urology, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon, Portugal
| | - João T Guimarães
- Department of Clinical Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| |
Collapse
|
8
|
Lohani N, Rajeswari MR. Antigene and Antiproliferative Effects of Triplex-Forming Oligonucleotide (TFO) Targeted on hmgb1 Gene in Human Hepatoma Cells. Anticancer Agents Med Chem 2021; 20:1943-1955. [PMID: 32560618 DOI: 10.2174/1871520620666200619170438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The high mobility group box 1 (hmgb1) is one of the frequently over-expressed genes whose aberrant expression is reported in a number of human cancers. Various strategies are underway to inhibit hmgb1 expression in cancer cells having considerable therapeutic value. OBJECTIVE The present work involves selective transcriptional inhibition of the hmgb1 gene using selective DNA triplex structure-based gene technology. Here, the promoter region of the hmgb1 gene at position (-183 to -165) from the transcription start site as a target was selected using bioinformatic tools. METHODS The DNA triplex formation by the DNA of the target gene and TFO was confirmed using UV absorption spectroscopy, Circular Dichroism, and Isothermal Calorimetry. RESULTS Treatment of HepG2 cell with specific Triplex-forming Oligonucleotide significantly downregulated HMGB1 expression level at mRNA and protein levels by 50%, while the classical anticancer drugs, actinomycin/ adriamycin as positive controls showed 65% and the combination of TFO and drug decreased by 70%. The anti-proliferative effects of TFO correlated well with the fact of accumulation of cells in the Go phase and apoptotic cell death. Further, the binding of anti-cancer drugs to hmgb1 is stronger in DNA triplex state as compared to hmgb1 alone, suggesting the combination therapy as a better option. CONCLUSION Therefore, the ability of hmgb1 targeted triplex-forming oligonucleotide in combination with triplex selective anticancer drug holds promise in the treatment of malignancies associated with hmgb1 overexpression. The result obtained may open up new vistas to provide a basis for the rational drug design and searching for high-affinity ligands with a high triplex selectivity.
Collapse
Affiliation(s)
- Neelam Lohani
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Wu CH, Chen CH, Hsieh PF, Lee YH, Kuo WWT, Wu RCY, Hung CH, Yang YL, Lin VC. Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF-β pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1080-1089. [PMID: 33522686 DOI: 10.1002/tox.23107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Prostate cancer has significant mortality and metastasis rate in the male. Unfortunately, effective treatment for patients with advanced prostate cancer is still lacking. Verbascoside, a phenylethanoid glycoside, displays various pharmacological properties, such as the anti-cancer activities. The present study aimed to evaluate the effects of purified verbascoside on human prostate cancer and the associated molecular mechanisms. MATERIALS AND METHODS The human prostate cancer cell lines, Du-145 and PC-3, were treated with various concentrations of verbascoside (0.1, 1, 10 μM) for 24 h followed by the examination of cell viability using MTT and trypan blue exclusion assays. Cell migration and invasion capacities were assessed by wound healing assay and transwell system. Western blot and immunofluorescence staining were used to detect the expression of epithelial-mesenchymal transition (EMT)-associated factors, components of transforming growth factor (TGF-β)/Smad signaling, and high-mobility group box (HMGB)/receptor for advanced glycation end-products (RAGE) axis. RESULTS Verbascoside treatment significantly inhibited cell proliferation, migration, and invasion abilities of Du-145 and PC-3 cells. We showed that verbascoside decreased the expression of EMT promotors, Snail and Slug, and increased the expression of E-cadherin. Moreover, the expression level of alpha-smooth muscle actin was downregulated by verbascoside as well. Besides, we found that the TGF-β pathway was suppressed, which was demonstrated by the diminished expression of type I and II TGF-β receptors and phosphorylated Smad2/3 along with the upregulated Smad7. Our data suggested that this downregulation of TGF-β signaling was mediated by repression of HMGB 1 (HMGB1)/RAGE axis. CONCLUSION Verbascoside mitigated the cell proliferation and aggressiveness of prostate cancer via downregulation of TGF-β-associated EMT progression through HMGB1/RAGE suppression. Collectively, our findings revealed that verbascoside may be a beneficial dietary supplement for prostate cancer patients.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsien Chen
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Fang Hsieh
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Hsi Lee
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
- Department of Urology, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Wade Wei-Ting Kuo
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Richard Chen-Yu Wu
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Lin Yang
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Eva TA, Barua N, Chowdhury MM, Yeasmin S, Rakib A, Islam MR, Emran TB, Simal-Gandara J. Perspectives on signaling for biological- and processed food-related advanced glycation end-products and its role in cancer progression. Crit Rev Food Sci Nutr 2020; 62:2655-2672. [PMID: 33307763 DOI: 10.1080/10408398.2020.1856771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a multifunctional receptor binds a broad spectrum of ligands and mediates responses to cell damage and stress conditions. It also activates programs leading to acute and chronic inflammation and implicated in several pathological diseases, including cancer. In this review, we presented the non-enzymatic reaction of reducing sugar with the amino groups of proteins, lipids, and nucleic acids. This reaction initiates a complex series of rearrangements and dehydrations, and then produces a class of irreversibly cross-linked heterogeneous fluorescent moieties, termed advanced glycation end products (AGEs). There is a growing body of evidence that interaction of processes food-related AGEs with a cell surface receptor RAGE brings out the generation of oxidative stress and subsequently evokes proliferative, angiogenic and inflammatory reactions, thereby being involved in the development and progression of various types of cancers. This review is an insightful assessment of molecular mechanisms through which RAGE signaling contributes to the enhancement and survival of the tumorigenic cell. Here we summarize the procurement of individual ligands of RAGE like amphoterin, calcium-binding proteins, and resultant mediation of RAGE signaling pathway, which partially can elucidate the elevated risk of several cancers. Besides, we summarize many factors or conditions including APE1 (apurinic/apyrimidinic endonuclease 1), retinol mutations, retinoblastoma (Rb), proteinase 3 (PR3) hypoxia and so on through which RAGE signaling presents an establishment of cancerous environment. Additionally, we also reviewed some recent findings that give shreds of evidence for presenting the role of RAGE and its ligands in the advanced stage of cancers.
Collapse
Affiliation(s)
- Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Nizum Barua
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Sharfin Yeasmin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Rashedul Islam
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| |
Collapse
|
11
|
Chou YE, Yang PJ, Lin CY, Chen YY, Chiang WL, Lin PX, Huang ZY, Huang M, Ho YC, Yang SF. The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197247. [PMID: 33023053 PMCID: PMC7579148 DOI: 10.3390/ijerph17197247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the major cancers of the genitourinary tract. High-mobility group box 1 (HMGB1) was suggested as a promising therapeutic target for prostate cancer. In this study, we aim to elucidate the associations of HMGB1 single nucleotide polymorphisms (SNPs) with prostate cancer susceptibility and clinicopathological characteristics. The HMGB1 SNPs rs1412125, rs2249825, rs1045411, and rs1360485 in 579 prostate cancer patients and 579 cancer-free controls were analyzed with real-time polymerase chain reactions (real-time PCR). All of the data were evaluated with SAS statistical software. Our results showed that the HMGB1 rs1045411 T allele genotype was significantly associated with advanced pathologic T stage (odds ratio (OR) = 1.433, 95% confidence interval (CI) = 1.021–2.012; p = 0.037) and pathologic N1 stage (OR = 2.091, 95% CI = 1.160–3.767; p = 0.012), and the rs1360485 polymorphic CT + TT genotype was associated with pathologic Gleason grade group (4 + 5) (OR = 1.583, 95% CI = 1.017–2.462; p = 0.041), pathologic T stage (3 + 4) (OR = 1.482, 95% CI = 1.061–2.070; p = 0.021), and pathologic N1 stage (OR = 2.131, 95% CI = 1.178–3.852; p = 0.011) compared with their wild-type carriers. In conclusion, our results revealed that the HMGB1 SNPs were associated with the clinical status of prostate cancer. The HMGB1 SNPs may have the potential to predict prostate cancer disease progression.
Collapse
Affiliation(s)
- Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-E.C.); (P.-J.Y.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-E.C.); (P.-J.Y.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yen-Yu Chen
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Whei-Ling Chiang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Pei-Xuan Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Zih-Yun Huang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Matthew Huang
- White Oaks Secondary School, Oakville, ON L6H 1Z5, Canada;
| | - Yung-Chuan Ho
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
- Correspondence: (Y.-C.H.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (Y.-C.H.); (S.-F.Y.)
| |
Collapse
|
12
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
14
|
Tsuyukubo T, Ishida K, Osakabe M, Shiomi E, Kato R, Takata R, Obara W, Sugai T. Comprehensive analysis of somatic copy number alterations in clear cell renal cell carcinoma. Mol Carcinog 2020; 59:412-424. [PMID: 32039517 PMCID: PMC7079091 DOI: 10.1002/mc.23164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Somatic copy number alterations (SCNAs) are important biological characteristics that can identify genome-wide alterations in renal cell carcinoma (RCC). Recent studies have shown that SCNAs have potential value for determining the prognosis of RCC. We examined SCNAs using the Affymetrix platform to analyze samples from 59 patients with clear cell RCCs (ccRCCs) including first cohort (30 cases) and second cohort (validation cohort, 29 cases). We stratified SCNAs in the ccRCCs using a hierarchical cluster analysis based on SCNA types, including gain, loss of heterozygosity (LOH), copy neutral LOH, mosaic, and mixed types. In this way, the examined two cohorts were categorized into two subgroups (1 and 2). Although the frequency of mixed type was higher in subgroup 1 than in subgroup 2 in the two cohorts, the association did not reach statistical significance. There was a significant difference in the frequency of metachronous metastasis between subgroups 1 and 2 (subgroup 2 > 1). In addition, subgroup 2 was retained in multivariate analysis of both cohorts. We examined whether there were specific alleles differing between subgroups 1 and 2 in both cohorts. We found that there was indeed a statistically significant difference in the 3p mixed types. Among the 3p mixed type, we found that 3p24.3 mixed type was inversely correlated with the presence of metachronous metastasis in ccRCC. The association was also retained in multivariate analysis in second cohort. We suggest that the 3p24.3 mixed type may be a novel marker to predict a favorable prognosis in ccRCC.
Collapse
Affiliation(s)
- Takashi Tsuyukubo
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ei Shiomi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Renpei Kato
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
15
|
Antifibrotic Effects of High-Mobility Group Box 1 Protein Inhibitor (Glycyrrhizin) on Keloid Fibroblasts and Keloid Spheroids through Reduction of Autophagy and Induction of Apoptosis. Int J Mol Sci 2019; 20:ijms20174134. [PMID: 31450620 PMCID: PMC6747471 DOI: 10.3390/ijms20174134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023] Open
Abstract
Overabundance of extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. High-mobility group box 1 (HMGB1) plays important roles in the regulation of cellular death. Suppression of HMGB1 inhibits autophagy while increasing apoptosis. Suppression of HMGB1 with glycyrrhizin has therapeutic benefits in fibrotic diseases. In this study, we explored the possible involvement of autophagy and HMGB1 as a cell death regulator in keloid pathogenesis. We have highlighted the potential utility of glycyrrhizin as an antifibrotic agent via regulation of the aberrant balance between autophagy and apoptosis in keloids. Higher HMGB1 expression and enhanced autophagy were observed in keloids. The proliferation of KFs was decreased following glycyrrhizin treatment. While apoptosis was enhanced in keloids after glycyrrhizin treatment, autophagy was significantly reduced. The expressions of ERK1/2, Akt, and NF-κB, were enhanced in HMGB1-teated fibroblasts, but decreased following glycyrrhizin treatment. The expression of extracellular matrix (ECM) components was reduced in glycyrrhizin-treated keloids. TGF-β, Smad2/3, ERK1/2, and HMGB1 were decreased in glycyrrhizin-treated keloids. Treatment with the autophagy inhibitor 3-MA resulted in a decrease of autophagy markers and collagen in the TGF-β-treated fibroblasts. The results indicated that autophagy plays an important role in the pathogenesis of keloids. Because glycyrrhizin appears to reduce ECM and downregulate autophagy in keloids, its potential use for treatment of keloids is indicated.
Collapse
|
16
|
Lv D, Song X, Huang B, Yu YZ, Shu F, Wang C, Chen H, Zhang HB, Zhao S. HMGB1 Promotes Prostate Cancer Development and Metastasis by Interacting with Brahma-Related Gene 1 and Activating the Akt Signaling Pathway. Am J Cancer Res 2019; 9:5166-5182. [PMID: 31410208 PMCID: PMC6691575 DOI: 10.7150/thno.33972] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background and Aim: We have previously shown that high-mobility group box 1 (HMGB1) is an independent biomarker for shortened survival of prostate cancer (PCa) patients. However, the specific role of HMGB1 in tumor development and progression remains largely unknown. In this study, we investigated the molecular mechanisms of HMGB1 in PCa tumorigenesis. Methods: Gain-of-function and loss-of-function experiments were used to determine the biological functions of HMGB1 both in vitro and in vivo. Bioinformatic analysis, immunoprecipitation, and immunofluorescence assays were applied to discern and examine the relationship between HMGB1 and its potential targets. Specimens from 64 patients with PCa were analyzed for the expression of HMGB1 and its relationship with Brahma-related gene 1 (BRG1) was examined by immunohistochemistry. Results: The results demonstrated that ectopic expression of HMGB1 facilitated growth and metastasis of PCa by enhancing Akt signaling pathway and promoting epithelial-mesenchymal transition (EMT), while silencing of HMGB1 showed the opposite effects. Mechanistically, HMGB1 exerted these functions through its interaction with BRG1 which may augment BRG1 function and activate the Akt signaling pathway thereby promoting EMT. Importantly, both HMGB1 and BRG1 expression was markedly increased in human PCa tissues. Conclusions: Taken together, these findings indicate that upregulation of HMGB1 promotes PCa development via activation of Akt and accelerates metastasis through regulating BRG1-mediated EMT. HMGB1 could be used as a novel potential target for the treatment of PCa.
Collapse
|
17
|
Mukherjee A, Huynh V, Gaines K, Reh WA, Vasquez KM. Targeting the High-Mobility Group Box 3 Protein Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Cancer Res 2019; 79:3185-3191. [PMID: 31061066 DOI: 10.1158/0008-5472.can-19-0542] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Chemotherapeutic regimens for ovarian cancer often include the use of DNA interstrand crosslink-inducing agents (e.g., platinum drugs) or DNA double-strand break-inducing agents. Unfortunately, the majority of patients fail to maintain a durable response to treatment, in part, due to drug resistance, contributing to a poor survival rate. In this study, we report that cisplatin sensitivity can be restored in cisplatin-resistant ovarian cancer cells by targeting the chromatin-associated high-mobility group box 3 (HMGB3) protein. HMGB proteins have been implicated in the pathogenesis and prognosis of ovarian cancer, and HMGB3 is often upregulated in cancer cells, making it a potential selective target for therapeutic intervention. Depletion of HMGB3 in cisplatin-sensitive and cisplatin-resistant cells resulted in transcriptional downregulation of the kinases ATR and CHK1, which attenuated the ATR/CHK1/p-CHK1 DNA damage signaling pathway. HMGB3 was associated with the promoter regions of ATR and CHK1, suggesting a new role for HMGB3 in transcriptional regulation. Furthermore, HMGB3 depletion significantly increased apoptosis in cisplatin-resistant A2780/CP70 cells after cisplatin treatment. Taken together, our results indicate that targeted depletion of HMGB3 attenuates cisplatin resistance in human ovarian cancer cells, increasing tumor cell sensitivity to platinum drugs. SIGNIFICANCE: This study shows that targeting HMGB3 is a potential therapeutic strategy to overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Van Huynh
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Kailee Gaines
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Wade Alan Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
18
|
Jung HS, Gu J, Kim JE, Nam Y, Song JW, Kim HK. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS One 2019; 14:e0216055. [PMID: 31034495 PMCID: PMC6488070 DOI: 10.1371/journal.pone.0216055] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Neutrophils can generate extracellular net-like structures by releasing their DNA–histone complexes and antimicrobial peptides, which is called neutrophil extracellular traps (NETs). Various stimuli can induce NET formation. In particular, neutrophils and NET formation are abundant in tumor tissue. This study investigated how cancer cells induce NET formation and whether this NET formation promotes plasma thrombin generation and cancer progression. Methods Induction of NET formation by a pancreatic cancer cell line (AsPC-1) was assessed by measuring the histone–DNA complex level. The endogenous thrombin potential (ETP) was measured by thrombin generation assay. In vitro migration, invasion, and tubule formation assays were performed. The circulating levels of NET markers and hypercoagulability markers were assessed in 62 patients with pancreatobiliary malignancy and 30 healthy controls. Results AsPC-1 significantly induced NET formation in a dose-dependent manner. Conditioned medium (CM) from AsPC-1 also induced NETs. Interestingly, NET-formation was abolished by heat-inactivated CM, but not by lipid-extracted CM, suggesting an important role of protein components. A reactive oxygen species inhibitor did not inhibit cancer cell–induced NET formation, but prostaglandin E1 (PGE1, cyclic adenosine monophosphate inducer) and antithrombin did. NETs significantly increased ETP of normal plasma. Of note, NETs promoted cancer cell migration and invasion as well as angiogenesis, which were inhibited by histone-binding agents (heparin, polysialic acid), a DNA-degrading enzyme, and Toll-like receptor neutralizing antibodies. In patients with pancreatobiliary malignancy, elevated NET markers correlated well with hypercoagulability makers. Conclusion Our findings indicate that cancer cell–induced NET formation enhances both hypercoagulability and cancer progression and suggest that inhibitors of NET formation such as PGE1 and antithrombin can be potential therapeutics to reduce both hypercoagulability and cancer progression.
Collapse
Affiliation(s)
- Hye Soo Jung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - JaYoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngwon Nam
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Ramezani A, Aghakhani A, Soleymani S, Bavand A, Bolhassani A. Significance of serum antibodies against HPV E7, Hsp27, Hsp20 and Hp91 in Iranian HPV-exposed women. BMC Infect Dis 2019; 19:142. [PMID: 30755156 PMCID: PMC6373072 DOI: 10.1186/s12879-019-3780-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among different types of human papillomavirus (HPV), types 16 and 18 were known to be high-risk agents causing mainly cervical cancer. Up to now, the potential of HPV E7 protein has been proved as a diagnostic marker of cervical cancer. Moreover, the levels of anti-heat shock protein (Hsp) and anti-high mobility group box-1 (HMGB1) antibodies in cancer patients have been useful in tumor diagnosis. The goal of the present study was to determine the efficiency of the potential serologic markers including HPV E7, Hsp20, Hsp27 proteins and Hp91 peptide in Iranian HPV-exposed women, for the first time. METHODS At first, the recombinant HPV E7, Hsp20 and Hsp27 proteins were expressed in E. coli system, and purified by affinity chromatography under native conditions. Then, antibody responses were detected against the recombinant proteins as well as Hp91 peptide as potential markers in 49 Iranian women who were seropositive for HPV-16 and 18 L1 capsids (i.e., HPV-exposed women) and 49 controls using indirect ELISA. RESULTS Our data indicated that the seroreactivities of women exposed to HPV16, HPV18 and both of them against the recombinant E7, Hsp20, Hsp27 proteins and Hp91 peptide were significantly higher than those in control group (p < 0.05 for HPV16 or HPV18; p < 0.01 for both of them versus all markers). HPV-exposed women with high antibody responses to HPV-16 and 18 L1 capsids as a commercial biomarker had significant seroreactivity to HPV-16 and 18 E7 and Hsp27 (p < 0.05). The recombinant E7 and Hsp27 proteins showed higher efficiency than Hsp20 and Hp91 for detection of individuals exposed to HPV infections (p < 0.05). CONCLUSION Generally, the levels of serum E7 and Hsp27 were increased in HPV-16 and 18 L1- seropositive women suggesting their potential value as a diagnostic marker for HPV infections.
Collapse
Affiliation(s)
- Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arezoo Aghakhani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Zhao S, Yang J, Liu T, Zeng J, Mi L, Xiang K. Dexamethasone inhibits NF‑кBp65 and HMGB1 expression in the pancreas of rats with severe acute pancreatitis. Mol Med Rep 2018; 18:5345-5352. [PMID: 30365121 PMCID: PMC6236277 DOI: 10.3892/mmr.2018.9595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extra-pancreatic organ dysfunction; however, the underlying mechanisms remain unclear. The present study was designed to evaluate the effect of dexamethasone (DXM) on pancreatic damage and to investigate the role of high-mobility group box-1 (HMGB1) and nuclear factor-κB (NF-κBp65) in the development of SAP in animal and cell models. For the in vivo experiment, 35 Sprague-Dawley rats were randomly assigned to three groups: The sham-operation control group, the SAP group and the DXM treatment group. Histological analysis revealed that, when DXM was infused into SAP rats, edema formation and structural alterations with necrosis were reduced, and the number of apoptotic cells was markedly reduced. In addition, compared with the SAP group, the expression level of HMGB1 was significantly decreased in the nucleus and the expression level of NF-κBp65 was significantly decreased in the cytoplasm from rats treated with DXM. In vitro, DXM was able to suppress the apoptosis and cell death induced by caerulein (CAE), and DXM could suppress the expression of NF-κBp65 and HMGB1 induced by CAE, as demonstrated by western blotting and immunofluorescence analysis. Therefore, these results provide an experimental basis for investigating the underlying therapeutic mechanisms of DXM treatment for SAP.
Collapse
Affiliation(s)
- Shangping Zhao
- ICU, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Juanxian Zeng
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangliang Mi
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kaimin Xiang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
21
|
HMGB1 correlates with angiogenesis and poor prognosis of perihilar cholangiocarcinoma via elevating VEGFR2 of vessel endothelium. Oncogene 2018; 38:868-880. [PMID: 30177842 DOI: 10.1038/s41388-018-0485-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Perihilar cholangiocarcinoma (PHCCA) is the most common type of cholangiocarcinoma with low resection rate and high morbidity. The study of PHCCA biomarkers made progresses slowly compared with intrahepatic cholangiocarcinoma because of surgical complexity and low possibility of radical surgery, which resulted in the difficulty of specimen obtainment. To screen and identify new biomarkers in PHCCA, we constructed a retrospective cohort with 121 PHCCA patients and a prospective cohort consisting of 64 PHCCA patients, and screened the candidate biomarkers by immunohistochemistry and quantified PCR. In our study, expression of high mobility group box 1 (HMGB1) was demonstrated to be significantly associated with microvascular density (MVD) and unfavorable prognosis of PHCCA in both retrospective and prospective study. Moreover, HMGB1 concentrations in bile and serum of PHCCA patients and healthy controls were detected and compared. Postoperative serum HMGB1 and reflux cholangitis indicated recurrence and unfavorable prognosis of PHCCA. With experiments in vitro and in vivo, we demonstrated that intracellular HMGB1 could be released from PHCCA cells and induce invasion and angiogenesis with LPS stimulation. VEGFR2 expression in vessel endothelial cells was upregulated by the released HMGB1 from PHCCA, resulting in the ectopic angiogenesis. In conclusion, intracellular HMGB1 could be released from PHCCA cells and promote angiogenesis via elevating VEGFR2 in vessel endothelial cells. High expression of HMGB1 was associated with MVD and poor prognosis in clinical analyzation. Postoperative serum HMGB1 and cholangitis could predict high recurrence and unfavorable prognosis.
Collapse
|
22
|
Shu W. Downregulation of high mobility group protein box-1 resensitizes ovarian cancer cells to carboplatin. Oncol Lett 2018; 16:4586-4592. [PMID: 30214593 DOI: 10.3892/ol.2018.9232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Ovarian cancer, one of the most common types of cancer, has the highest mortality among all gynecological malignancies. The development of acquired drug resistance is the leading cause of chemotherapy failure. To study the mechanism underlying drug resistance in ovarian cancer, a drug-resistant ovarian cancer SKOV3 cell line was developed using the chemotherapeutic agent carboplatin (SKOV3-Carb) in the present study. It has been reported that high-mobility group protein box-1 (HMGB1) is associated with the chemoresistance of tumor cells. Therefore, the probable involvement of HMGB1 in the development of carboplatin resistance in ovarian cancer SKOV3 cells was investigated. HMGB1 has been reported to be overexpressed in carboplatin-resistant SKOV3-Carb cells compared with control SKOV3 cells. Subsequently, the expression of HMGB1 was silenced by small interference RNA technology. Reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that mRNA and protein expression levels of HMGB1 were significantly inhibited in HMGB1-silenced cells. Cell proliferation and apoptosis analyses were performed to evaluate the effect of HMGB1 silencing on resistant ovarian cancer cells. An MTT assay revealed that the proliferation of HMGB1-silenced SKOV3 and SKOV3-Carb cells were decreased compared with the proliferation of non-silenced control cells. Additionally, HMGB1 protein expression levels in SKOV3 cells, but not in SKOV3-Carb cells, were decreased in response to carboplatin treatment. Annexin V-fluorescein isothiocyanate/propidium iodide staining demonstrated that HMGB1 silencing enhanced the effects of carboplatin in inducing the apoptosis of SKOV3-Carb cells relative to HMGB1 non-silenced control cells. The results of the present study suggested that HMGB1 may be involved in the development of carboplatin resistance in ovarian cancer SKOV3 cells and that HMGB1 silencing may induce the sensitization of carboplatin-resistant ovarian cancer cells to carboplatin. Therefore, HMGB1 may be considered as a potent therapeutic target for increasing the sensitivity of ovarian cancer cells to carboplatin in order to improve the treatment and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Wen Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
23
|
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 2018; 18:3411-3420. [PMID: 30066873 PMCID: PMC6102647 DOI: 10.3892/mmr.2018.9326] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The influence of Toll-like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA-MB-231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF-7) and normal human MDA-Kb2 mammary gland cells by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA-MB-231 cells compared with either MCF-7 cells or MDA-Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huihao Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yajuan Fu
- Southern Biomedical Research Center, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng Zhao
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Liangfei Yu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
24
|
Zhang J, Shao S, Han D, Xu Y, Jiao D, Wu J, Yang F, Ge Y, Shi S, Li Y, Wen W, Qin W. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int J Oncol 2018; 53:659-671. [PMID: 29845254 PMCID: PMC6017266 DOI: 10.3892/ijo.2018.4420] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
High mobility group box 1 (HMGB1), a critical damage-associated molecular pattern molecule, has been implicated in several inflammatory diseases and cancer types. The overexpression of HMGB1 protein occurs in prostate cancer, and is closely associated with the proliferation and aggressiveness of tumor cells. However, the underlying mechanisms of HMGB1-induced tumor metastasis in prostate cancer remain unclear. In the present study, it was demonstrated that the expression of HMGB1 was high in prostate cancer samples, particularly in the metastatic tissues. Furthermore, recombinant HMGB1 (rHMGB1) enhanced the invasive and metastatic capabilities of the prostate cancer cells. Molecular phenotype alterations of epithelial-to-mesenchymal transition (EMT) and elevated expression levels of matrix metalloproteinase (MMP)-1, -3 and -10 were observed. In addition, advanced glycosylation end-product specific receptor (RAGE) and its downstream molecule nuclear factor (NF)-κB pathway were activated during rHMGB1-induced metastasis. Silencing RAGE or NF-κB reversed the upregulation of MMP and EMT marker expression levels, thus reducing the migration and invasiveness of tumor cells. Taken together, these results suggest that highly expressed HMGB1 drives EMT and the overexpression of MMP-1, -3, -10 via the RAGE/NF-κB signaling pathways, which facilitates the metastasis of prostate cancer and may be a potential therapeutic target for metastatic prostate cancer.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dian Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yufeng Ge
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
25
|
Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, Godovikova T, Silnikov V, Moinuddin. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol 2018; 49:44-55. [DOI: 10.1016/j.semcancer.2017.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
26
|
Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, Dai LH, Zhou Z, Wang KJ, Yang J, Cheng YQ, Gao X, Qu M, Wang HR, Zhu F, Tian QQ, Liu D, Cao L, Cui XG, Xu CL, Xu DF, Sun YH. Blocking the Feedback Loop between Neuroendocrine Differentiation and Macrophages Improves the Therapeutic Effects of Enzalutamide (MDV3100) on Prostate Cancer. Clin Cancer Res 2017; 24:708-723. [PMID: 29191973 DOI: 10.1158/1078-0432.ccr-17-2446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/22/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang Peng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - De-Pei Kong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-He Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhe Zhou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kai-Jian Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Qiong Cheng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Ru Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin-Qin Tian
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Chuan-Liang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
27
|
Xing P, Chen Y, Gao J, Bai L, Yuan Z. A fast approach to detect gene-gene synergy. Sci Rep 2017; 7:16437. [PMID: 29180805 PMCID: PMC5703944 DOI: 10.1038/s41598-017-16748-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022] Open
Abstract
Selecting informative genes, including individually discriminant genes and synergic genes, from expression data has been useful for medical diagnosis and prognosis. Detecting synergic genes is more difficult than selecting individually discriminant genes. Several efforts have recently been made to detect gene-gene synergies, such as dendrogram-based I(X1; X2; Y) (mutual information), doublets (gene pairs) and MIC(X1; X2; Y) based on the maximal information coefficient. It is unclear whether dendrogram-based I(X1; X2; Y) and doublets can capture synergies efficiently. Although MIC(X1; X2; Y) can capture a wide range of interaction, it has a high computational cost triggered by its 3-D search. In this paper, we developed a simple and fast approach based on abs conversion type (i.e. Z = |X1 − X2|) and t-test, to detect interactions in simulation and real-world datasets. Our results showed that dendrogram-based I(X1; X2; Y) and doublets are helpless for discovering pair-wise gene interactions, our approach can discover typical pair-wise synergic genes efficiently. These synergic genes can reach comparable accuracy to the individually discriminant genes using the same number of genes. Classifier cannot learn well if synergic genes have not been converted properly. Combining individually discriminant and synergic genes can improve the prediction performance.
Collapse
Affiliation(s)
- Pengwei Xing
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yuan Chen
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | - Lianyang Bai
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Zheming Yuan
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, Hunan Agricultural University, Changsha, Hunan, 410128, China. .,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
28
|
sRAGE alleviates neutrophilic asthma by blocking HMGB1/RAGE signalling in airway dendritic cells. Sci Rep 2017; 7:14268. [PMID: 29079726 PMCID: PMC5660212 DOI: 10.1038/s41598-017-14667-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) plays a role in inflammatory reactions. The soluble form of RAGE (sRAGE) acts as a decoy to inhibit interactions of RAGE with advanced glycation end products such as High mobility group box 1 (HMGB1). We have demonstrated that HMGB1 directs Th17 skewing by regulating dendritic cell (DC) functions in a previous study. However, the protective effects of HMGB1 blockade with sRAGE in the development of neutrophilic asthma remain unclear. Here, we showed that allergen challenge decreased expression of sRAGE in a murine model of neutrophilic asthma, correlating well with neutrophil counts and interleukin (IL)-17 production. When HMGB1 signalling was blocked by intratracheal administration of sRAGE before sensitisation, HMGB1 expression, neutrophilic inflammation, and Th17-type responses were reduced significantly. Anti-asthma effects of sRAGE were achieved by inhibition of RAGE and IL-23 expression in airway CD11c+ antigen-presenting cells. Finally, we showed that sRAGE inhibited Th17 polarisation induced by recombinant HMGB1 (rHMGB1)-activated dendritic cells (DCs) in vitro. Adoptive transfer of rHMGB1-activated DCs was sufficient to restore airway inflammation, whereas transfer of rHMGB1 plus sRAGE-activated DCs significantly reduced neutrophilic inflammation. Thus, sRAGE prevents Th17-mediated airway inflammation in neutrophilic asthma at least partly by blocking HMGB1/RAGE signalling in DCs.
Collapse
|
29
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
30
|
HMGB1 attenuates TGF-β-induced epithelial-mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol Cell Biochem 2017; 431:1-10. [PMID: 28285361 DOI: 10.1007/s11010-017-2968-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Abnormal expression of high-mobility group box-1 (HMGB1) protein occurs in many tumors and is closely associated with tumor invasion and metastasis. However, a role for HMGB1 in epithelial-mesenchymal transition (EMT) in hypopharyngeal carcinoma has not been previously reported. We cultured cells of the hypopharyngeal carcinoma cell line FaDu in vitro and then treated them with 5 ng/ml TGF-β1 for 48 h to induce EMT. Vimentin, Snail, and HMGB1 expression patterns were then detected using immunofluorescence staining; HMGB1 mRNA and protein expression were verified by RT-PCR and western blot analyses. HMGB1 was then silenced in FaDu cells using RNAi, followed by detection of Vimentin, Snail, and HMGB1 expressions by immunofluorescence staining. The mRNA expression levels of Vimentin, Snail, HMGB1, and E-cadherin were verified by RT-PCR, while protein expression of HMGB1 and receptor for advanced glycation end products (RAGE) were detected by western blot analysis. The biological behavior of FaDu cells was observed before and after HMGB1 silencing using wound healing and cell invasion assays. Following culture with 5 ng/ml TGF-β1 for 48 h, the morphology of FaDu cells changed from a regular cobblestone-like appearance into a spindle-like shape. Expression levels of Vimentin, Snail, and HMGB1 were upregulated at both mRNA and protein levels as determined by RT-PCR, immunofluorescence, and western blotting. After HMGB1 silencing, mRNA expression levels of the epithelial cell marker E-cadherin were upregulated. Meanwhile, expression levels of the mesenchymal markers Vimentin and Snail were decreased. Western blotting revealed that HMGB1 and RAGE were downregulated. RNAi-mediated inhibition of HMGB1 expression decreased the capacities of FaDu cells for invasion and metastasis as determined by wound healing and cell invasion assays. HMGB1 is essential for maintaining the interstitial cell phenotype in TGF-β1-induced EMT of FaDu cells, and silencing HMGB1 greatly inhibits the invasive and metastatic ability of these cells.
Collapse
|
31
|
Xia J, Yu X, Song X, Li G, Mao X, Zhang Y. Inhibiting the cytoplasmic location of HMGB1 reverses cisplatin resistance in human cervical cancer cells. Mol Med Rep 2016; 15:488-494. [PMID: 27959427 DOI: 10.3892/mmr.2016.6003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide, and resistance to chemotherapy drugs is the biggest obstacle in the treatment of cervical cancers. In the present study, the molecular mechanisms underlying cisplatin resistance in human cervical cancer cells were investigated. When human cervical cancer cells were treated with 10 µg/ml of cisplatin for 24 and 48 h, high mobility group box 1 (HMGB1) protein expression levels significantly increased in a time‑dependent manner. Comparisons between cisplatin‑sensitive HeLa cells and cisplatin‑resistant HeLa/DDP cells revealed higher levels of HMGB1 in HeLa/DDP cells than in HeLa cells. Additionally, the half maximal inhibitory concentration (IC50) value for cisplatin in HeLa/DDP cells was 5.3‑fold that in HeLa cells. Analysis of the distribution of cellular components revealed that HMGB1 translocation from the nucleus to cytoplasm contributed to cisplatin resistance. This was further confirmed by demonstration that ethyl pyruvate treatment suppressed the cytoplasmic translocation of HMGB1, resulting in inhibition of HeLa cell proliferation. Furthermore, endogenous HMGB1 was inhibited with HMGB1‑specific short hairpin (sh)RNA, and MTT assay results showed that interference with HMGB1 expression reduced cell viability and potentially reversed cisplatin resistance in HeLa cells. Transfection with HMGB1 shRNA was demonstrated to induce cell apoptosis in HeLa cells, as detected by FACS analysis. In addition, administration of recombinant HMGB1 protein in HeLa cells promoted cell autophagy, mediated by the phosphorylation of extracellular signal‑regulated kinase 1/2. Thus, cytoplasmic HMGB1 translocation and HMGB1‑induced cell autophagy are proposed to contribute to cisplatin resistance by inhibiting apoptosis of cervical cancer cells. HMGB1 could, therefore, represent a novel therapeutic target for, and a diagnostic marker of, chemotherapy resistant cervical cancers.
Collapse
Affiliation(s)
- Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiguang Mao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yujiao Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
32
|
Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-β1/Gfi-1 axis. Cancer Lett 2016; 385:65-74. [PMID: 27840243 DOI: 10.1016/j.canlet.2016.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an intrinsic resistance to almost all chemotherapeutic drugs, including gemcitabine. An abundance of tumor-associated macrophages (TAMs), which can promote the resistance of PDAC to gemcitabine, has been observed in the microenvironments of several tumors. In this study, we confirmed that incubation in TAM-conditioned medium (TAM-CM) reduces the gemcitabine-induced apoptosis of PDAC cells. Simvastatin attenuated the TAM-mediated resistance of PDAC cells to gemcitabine. Further investigation found that simvastatin reversed the TAM-mediated down-regulation of Gfi-1 and up-regulation of CTGF and HMGB1. Simvastatin induced Gfi-1 expression, which increased the sensitivity of PDAC cells to gemcitabine by decreasing TGF-β1 secretion by TAMs. A luciferase reporter assay and ChIP assay revealed that Gfi-1 directly repressed the transcription of CTGF and HMGB1. Simvastatin also reversed the effects of gemcitabine on the expression of TGF-β1 and Gfi-1 and reduced the resistance of PDAC to gemcitabine in vivo. These results provide the first evidence that simvastatin attenuates the TAM-mediated gemcitabine resistance of PDAC by blocking the TGF-β1/Gfi-1 axis. These findings suggest the TGF-β1/Gfi-1 axis as a novel therapeutic target for treating PDAC.
Collapse
|
33
|
Liang XY, Li Y, Ma YQ, Zhang ZM, He YL. Clinical significance of expression of high mobility group protein B1 and Toll-like receptor 4 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3495-3501. [DOI: 10.11569/wcjd.v24.i23.3495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of high mobility group protein B1 (HMGB1) and Toll-like receptor 4 (TLR4) in human esophageal squamous cell carcinoma and analyze their clinical significance.
METHODS: The expression of HMGB1 and TLR4 was detected by EnVision immunohisto-
chemical staining method in 72 esophageal squamous carcinoma specimens and 15 matched normal tissue specimens. Statistical methods were used to analyze the relationship between the expression of HMGB1 and TLR4 and clinical and pathological parameters.
RESULTS: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues was significantly higher than that in matched normal tissues (P < 0.05). HMGB1 and TLR4 expression was positively associated with lymphatic metastasis and TNM stage (P < 0.05), but negatively correlated with tumor size and degree of differentiation. The expression of HMGB1 and TLR4 had a significant positive correlation (r = 0.377, P < 0.01).
CONCLUSION: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues is associated with lymphatic metastasis and TNM stage, and the joint detection of HMGB1 and TLR4 expression may help evaluate the degree of malignancy of esophageal squamous carcinoma. HMGB1/TLR may be used as important biological indicators reflecting the prognosis of esophageal cancer and important targets for therapy of esophageal cancer.
Collapse
|
34
|
Chen Y, Lin C, Liu Y, Jiang Y. HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2. Tumour Biol 2016; 37:4399-408. [PMID: 26499944 PMCID: PMC4844642 DOI: 10.1007/s13277-015-4049-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) was found to be over-expressed in many kinds of human cancer, which binds with several receptors and activates RAGE-Ras-MAPK, Toll-like receptors, NF-κB, and Src family kinase signaling pathways and plays a crucial role in tumorigenesis and cancer progression. However, the function and mechanism of HMGB1 in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to investigate the effect of HMGB1 on HCC progression and explore new molecular mechanism. HMGB1 transient knockdown, stable knockdown, and re-expression were performed by transfection with specific siRNA, shRNA, or expression vector in HCCLM3 cells. Results showed that transient knockdown HMGB1 prevented cell proliferation, promoted apoptosis, induced S phase arrest, and inhibited migration and invasion in vitro, and stable knockdown HMGB1 inhibited xenograft growth in Balb/c athymic mice in vivo. Molecular mechanism investigation revealed that knockdown HMGB1 significantly reduced the activation of MAPKs, including ERK1/2, p38, SAPK/JNK, as well as MAPKKs (MEK1/2, SEK1) and its substrates (c-Jun, c-Myc); downregulated NF-κB/p65 expression and phosphorylation level; decreased MMP-2 expression and activity; and upregulated p21 expression. Interestingly, c-Myc was firstly found to be involved in the promoting function of HMGB1 on HCC progression, which provided a novel clue for the inhibitory effect of HMGB1 on p21 expression by a p53-independent pathway. Collectively, these findings indicated that HMGB1 promoted HCC progression partly by enhancing the ERK1/2 and NF-κB pathways, upregulating MMP-2, and downregulating p21 via an ERK/c-Myc pathway.
Collapse
Affiliation(s)
- Yanmei Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Chengzhao Lin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yang Liu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China.
- Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Xu YF, Ge FJ, Han B, Yang XQ, Su H, Zhao AC, Zhao MH, Yang YB, Yang J. High-mobility group box 1 expression and lymph node metastasis in intrahepatic cholangiocarcinoma. World J Gastroenterol 2015; 21:3256-3265. [PMID: 25805932 PMCID: PMC4363755 DOI: 10.3748/wjg.v21.i11.3256] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the prognostic value of high-mobility group box 1 (HMGB1) expression in intrahepatic cholangiocarcinoma (IHCC) and the possible underlying mechanism.
METHODS: Tissue microarray was constructed from 65 IHCC patients. Immunohistochemistry was performed to validate expression of HMGB1 and Vascular endothelial growth factor C (VEGF-C). Real-time PCR and Western blot analyses were used to study transcript and protein levels. The interaction between HMGB1 and VEGF-C was evaluated by siRNA, real-time PCR, and enzyme-linked immuno assays. The correlation between HMGB1 expression and other clinicopathologic parameters was analyzed by χ2 test, and the univariate as well as multivariate analyses were accomplished by Kaplan-Meier method and Cox-regression model, respectively.
RESULTS: Overall, overexpression of HMGB1 was found in 38/65 (58.8%) IHCCs, whereas VEGF-C overexpression was present in 30/65 (46.2%) cases. Overexpression of HMGB1 was significantly correlated with lymphatic microvessel density (P = 0.031, r = 0.268) and VEGF-C expression (P = 0.041, r = 0.254). With univariate analysis, both HMGB1 (P = 0.001) and VEGF-C (P = 0.004) were identified to be significantly associated with overall survival rate. Multivariate analysis indicated that HMGB1 could be served as an unfavorable independent prognostic factor in IHCCs (P = 0.005). siRNA knockdown of HMGB1 inhibited transforming growth factor-β-induced epithelial-mesenchymal transition (EMT) by elevating E-Cadherin expression and reducing expression of N-Cadherin, Vimentin and Snail in RBE cells. Further in vitro study revealed that HMGB1 silencing significantly decreased the level of VEGF-C, whereas the recombinant HMGB1 increased the VEGF-C level in RBE cells (both P < 0.05), which suggested that HMGB1 could promote lymphatic microvessel density, and subsequently lymphatic invasion, via promoting VEGF-C expression.
CONCLUSION: Our results define an important role of HMGB1 in the progression of cholangiocarcinoma, and HMGB1 may serve as a prognostic marker for IHCC patients.
Collapse
|
36
|
Shen X, Li WQ. High-mobility group box 1 protein and its role in severe acute pancreatitis. World J Gastroenterol 2015; 21:1424-1435. [PMID: 25663762 PMCID: PMC4316085 DOI: 10.3748/wjg.v21.i5.1424] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/07/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
The high mobility group box 1 (HMGB1), which belongs to the subfamily of HMG-1/-2, is a highly conserved single peptide chain consisting of 215 amino acid residues with a molecular weight of approximately 24894 Da. HMGB1 is a ubiquitous nuclear protein in mammals and plays a vital role in inflammatory diseases. Acute pancreatitis is one of the most common causes of acute abdominal pain with a poor prognosis. Acute pancreatitis is an acute inflammatory process of the pancreas (duration of less than six months), for which the severe form is called severe acute pancreatitis (SAP). More and more studies have shown that HMGB1 has a bidirectional effect in the pathogenesis of SAP. Extracellular HMGB1 can aggravate the pancreatic inflammatory process, whereas intracellular HMGB1 has a protective effect against pancreatitis. The mechanism of HMGB1 is multiple, mainly through the nuclear factor-κB pathway. Receptors for advanced glycation end-products and toll-like receptors (TLR), especially TLR-2 and TLR-4, are two major types of receptors mediating the inflammatory process triggered by HMGB1 and may be also the main mediators in the pathogenesis of SAP. HMGB1 inhibitors, such as ethyl pyruvate, pyrrolidine dithiocarbamate and Scolopendra subspinipes mutilans, can decrease the level of extracellular HMGB1 and are the promising targets in the treatment of SAP.
Collapse
|
37
|
Zhang J, Liu C, Hou R. Knockdown of HMGB1 improves apoptosis and suppresses proliferation and invasion of glioma cells. Chin J Cancer Res 2014; 26:658-68. [PMID: 25561763 PMCID: PMC4279198 DOI: 10.3978/j.issn.1000-9604.2014.12.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/30/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The purposes of this study were to explore the effects of high mobility group protein box 1 (HMGB1) gene on the growth, proliferation, apoptosis, invasion, and metastasis of glioma cells, with an attempt to provide potential therapeutic targets for the treatment of glioma. METHODS The expressions of HMGB1 in glioma cells (U251, U-87MG and LN-18) and one control cell line (SVG p12) were detected by real time PCR and Western blotting, respectively. Then, the effects of HMGB1 on the biological behaviors of glioma cells were detected: the expression of HMGB1 in human glioma cell lines U251 and U-87MG were suppressed using RNAi technique, then the influences of HMGB1 on the viability, cycle, apoptosis, and invasion abilities of U251 and U-87MG cells were analyzed using in a Transwell invasion chamber. Also, the effects of HMGB1 on the expressions of cyclin D1, Bax, Bcl-2, and MMP 9 were detected. RESULTS As shown by real-time PCR and Western blotting, the expression of HMGB1 significantly increased in glioma cells (U251, U-87MG, and LN-18) in comparison with the control cell line (SVG p12); the vitality, proliferation and invasive capabilities of U251 and U-87MG cells in the HMGB1 siRNA-transfected group were significantly lower than those in the blank control group and negative control (NC) siRNA group (P<0.05) but showed no significant difference between the blank control group and NC siRNA group. The percentage of apoptotic U251 and U-87MG cells was significantly higher in the HMGB1 siRNA-transfected group than in the blank control group and NC siRNA group (P<0.05) but was similar between the latter two groups. The HMGB1 siRNA-transfected group had significantly lower expression levels of Cyclin D1, Bcl-2, and MMP-9 protein in U251 and U-87MG cells and significantly higher expression of Bax protein than in the blank control group and NC siRNA group (P<0.05); the expression profiles of cyclin D1, Bax, Bcl-2, and MMP 9 showed no significant change in both blank control group and NC siRNA group. CONCLUSIONS HMGB1 gene may promote the proliferation and migration of glioma cells and suppress its effects of apoptosis. Inhibition of the expression of HMGB1 gene can suppress the proliferation and migration of glioma cells and promote their apoptosis. Our observations provided a new target for intervention and treatment of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruiguang Hou
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
38
|
Role of miRNA let-7 and its major targets in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:376326. [PMID: 25276782 PMCID: PMC4168040 DOI: 10.1155/2014/376326] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias.
Collapse
|
39
|
A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis 2014; 5:e1361. [PMID: 25101674 PMCID: PMC4454296 DOI: 10.1038/cddis.2014.300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 11/15/2022]
Abstract
Osteosarcoma is a common primary bone tumor in children and adolescents. The drug resistance of osteosarcoma leads to high lethality. Macrophage migration inhibitory factor (MIF) is an inflammation-related cytokine implicated in the chemoresistance of breast cancer. In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. The inhibition of MIF by DSTD promoted autophagy by inducing Bcl-2 downregulation and the translocation of HMGB1. N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced ROS-mediated autophagy to rescue cell death. However, in the presence of chemotherapy drugs, DSTD enhanced the chemosensitivity by decreasing the HMGB1 level. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.
Collapse
|
40
|
Zhao CB, Bao JM, Lu YJ, Zhao T, Zhou XH, Zheng DY, Zhao SC. Co-expression of RAGE and HMGB1 is associated with cancer progression and poor patient outcome of prostate cancer. Am J Cancer Res 2014; 4:369-377. [PMID: 25057439 PMCID: PMC4106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023] Open
Abstract
Receptor for advanced glycation end products (RAGE), along with its ligand high mobility group box 1 (HMGB1), is believed to play an important role in prostate cancer. The aim of this retrospective study was to investigate the expression of RAGE and HMGB1 and their clinical impact on prostate cancer progression and prognosis. The expression of RAGE and HMGB1 was assessed by immunohistochemistry in cancer lesions from 85 confirmed prostate cancer cases. We determined the potential association between the expression level of these two proteins and the clinicopathological features and overall patient survival. RAGE and HMGB1 were expressed in 78.8% (67/85) and 68.2% (58/85) cases of prostate cancer, respectively, and in the majority (54/85) of cases, these two proteins were co-expressed. There was a strong correlation between RAGE and HMGB1 expressions (P<0.001). The expression of RAGE, HMGB1 and their co-expression were all associated with advanced tumor clinical stage (P<0.05 for all). RAGE expression was also associated with the prostate specific antigen (PSA) level (P=0.014). However, neither the individual expression of those genes nor their co-expression was significantly related with age or Gleason score. The co-expression of RAGE and HMGB1 was associated with poor overall survival in patients with stage III and IV prostate cancer (P=0.047). These results suggest that the expression of RAGE and HMGB1 is associated with the progression and poor prognosis of prostate cancer. RAGE and HMGB1 could be new prognostic biomarkers for prostate cancer as well as molecular target for novel forms of therapies.
Collapse
Affiliation(s)
- Chu-Biao Zhao
- Department of Urology and Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Ji-Ming Bao
- Department of Urology and Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Yong-Jie Lu
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Tong Zhao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, China
| | - Xin-Hua Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, China
| | - Da-Yong Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Shan-Chao Zhao
- Department of Urology and Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
41
|
Srinivasan M, Banerjee S, Palmer A, Zheng G, Chen A, Bosland MC, Kajdacsy-Balla A, Kalyanasundaram R, Munirathinam G. HMGB1 in hormone-related cancer: a potential therapeutic target. Discov Oncol 2014; 5:127-39. [PMID: 24718937 DOI: 10.1007/s12672-014-0175-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a dynamic nuclear protein participating in transcription, chromatin remodelling, and DNA recombination and repair processes. Accumulating evidence indicates that its function now extends beyond the nucleus, notably its extracellular role in inflammation. HMGB1 is implicated as a late mediator of sepsis and is also believed to promote atherosclerosis and other inflammatory diseases such as rheumatoid arthritis and systemic lupus erythematosus. Interestingly, deregulation of HMGB1 is shown to be associated with the hallmarks of cancer development. Moreover, several clinical studies have shown that HMGB1 is a promising biomarker for a variety of cancer types. In this review, we provide novel insights into the role and mechanisms of HMGB1, in particular, to hormone-related cancers and its potential to serve as a therapeutic target.
Collapse
Affiliation(s)
- Madhuwanti Srinivasan
- Department of Biomedical Sciences, University of Illinois, College of Medicine, 1601 Parkview Ave, Rockford, IL, 61107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Evaluating cytoplasmic and nuclear levels of inflammatory cytokines in cancer cells by western blotting. Methods Mol Biol 2014; 1172:271-83. [PMID: 24908314 DOI: 10.1007/978-1-4939-0928-5_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased expression and cellular release of inflammatory cytokines, interleukin-8 (IL-8; CXCL8), and high mobility group box-1 (HMGB1) are associated with increased cell proliferation, angiogenesis, and metastasis during cancer progression. In prostate and ovarian cancer cells, increased levels of IL-8 and HMGB1 correlate with poor prognosis. We have recently shown that proteasome inhibition by bortezomib (BZ) specifically increases IL-8 release from metastatic prostate and ovarian cancer cells. In this chapter, we describe a protocol to analyze the cytoplasmic and nuclear levels of IL-8 and HMGB1 in prostate and ovarian cancer cells by western blotting. IL-8 is localized in the cytoplasm in both cell types, and its protein levels are significantly increased by BZ. In contrast, HMGB1 is localized in the nucleus, and BZ increases its nuclear levels only in ovarian cancer cells. The protocol includes isolation of cytoplasmic and nuclear extracts, followed by SDS electrophoresis and western blotting, and can be easily modified to analyze the cytoplasmic and nuclear cytokine levels in other cell types.
Collapse
|
43
|
Wang FC, Xie Y. Role of HMGB1/TLR signaling pathway in Helicobacter pylori infection. Shijie Huaren Xiaohua Zazhi 2013; 21:3526-3531. [DOI: 10.11569/wcjd.v21.i32.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 protein (HMGB1), as a mediator of late inflammation, provides a wide therapeutic window. Extracellular HMGB1 as an endogenous injury-related molecule promotes the development of inflammation and damage by binding to its receptors. Studies have discovered that lipopolysaccharide and vacuolating cytotoxin A (VacA) of Helicobacter pylori (H. pylori) are strong stimulating factors of HMGB1 expression, and its extracellular receptors Toll-like receptors (TLRs) are closely associated with H. pylori infection and pathogenicity. Therefore, the HMGB1/TLR signaling pathway may play an important role in inflammatory response and immune abnormalities caused by H. pylori infection. This article will discuss the role of the HMGB1/TLR signaling pathway in H. pylori infection.
Collapse
|
44
|
Rui X, Shengli M, Zhankui J, Guofu P, Jinjian Y. HMGB1: a potential target for treatment of benign prostatic hyperplasia. Med Hypotheses 2013; 81:892-5. [PMID: 23948596 DOI: 10.1016/j.mehy.2013.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Previous studies have demonstrated an increased incidence of benign prostatic hyperplasia (BPH) in men with prostatitis. In addition to androgens and age, recent studies also pointed to an important role for inflammation in causing and promoting the progression of BPH. Inflammatory infiltrates are frequently observed in prostate tissue specimens, and the degree of inflammation has been correlated with prostate volume and weight. Furthermore, a pro-inflammatory microenvironment is closely related to BPH stromal hyperproliferation and tissue remodeling, although its role in BPH remains unclear. Accumulating evidence indicates that HMGB1 acts as a potent proinflammatory cytokine that contributes to the pathogenesis of many inflammatory and infectious disorders. Experimental studies also reported that HMGB1 promotes cell chemotaxis and proliferation. These observations led us to propose that HMGB1 contributes to the progress of BPH, and that targeting the HMGB1 signaling pathway might be a new strategy to treat prostatic enlargement.
Collapse
Affiliation(s)
- Xue Rui
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou 450002, People's Republic of China; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou 450002, People's Republic of China
| | | | | | | | | |
Collapse
|