1
|
Hsieh RZ, Huang KC, Su YP, Shi CS, Chang SF. The Potential Role of Bone Morphogenetic Protein-2/-4 in Excessive Mechanical Overloading-Initiated Joint Degeneration. J Cell Physiol 2024:e31509. [PMID: 39710977 DOI: 10.1002/jcp.31509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Excessive mechanical overloading of articular cartilage caused by excessive exercise or severe trauma is considered a critical trigger in the development of osteoarthritis (OA). However, the available clinical theranostic molecular targets and underlying mechanisms still require more elucidation. Here, we aimed to examine the possibility that bone morphogenetic proteins (BMPs) serve as molecular targets in rat cartilages and human chondrocytes under conditions of excessive mechanical overloading. Two rat models involving high-intensity running training and surgery for destabilization of medial meniscus, along with a cell model subjected to cyclic tensile strain, were established to simulate and investigate excessive mechanical overloading effects on cartilages/chondrocytes. We employed various methods, including immunohistochemistry, real-time polymerase chain reaction, western blot analysis, and enzyme-linked immunosorbent assay, to evaluate the expression, secretion, phosphorylation, and nuclear translocation of mRNA/proteins in cartilages and chondrocytes. Our findings revealed a simultaneous upregulation of BMP-2 and downregulation of BMP-4 in degenerated and inflamed cartilages and chondrocytes under excessive mechanical overloading. Furthermore, toll-like receptor 2 and nuclear factor kappa B-p50/p65 subunits signaling were identified as regulators governing this distinct expression pattern. Treatment with recombinant BMP-2 and/or BMP-4 proteins significantly ameliorated cartilage degeneration and chondrocyte inflammation induced by excessive mechanical overloading. These results strongly suggest that BMP-2 upregulation and BMP-4 downregulation might represent mechanisms for self-rescue and degeneration in damaged cartilage/chondrocytes, respectively. Our findings advance new insights that BMP-2/-4 might be potential molecular targets for excessive mechanical overloading-caused OA development and should be taken into account in future clinical applications.
Collapse
Affiliation(s)
- Rong-Ze Hsieh
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chin Huang
- Department of Orthopaedics, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ping Su
- Department of Orthopaedics and Traumatology, Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
2
|
Zhou S, Gong H, Xu E, Chen X, Wang X, Wang H, Zhu D, Zhang Y, Yang J, Gu G, Dai X. Start-up of a full-scale two-stage partial nitritation/anammox (PN/A) process treating reject water from high solid anaerobic sludge digestion (HSAD). WATER RESEARCH X 2024; 25:100259. [PMID: 39429521 PMCID: PMC11490804 DOI: 10.1016/j.wroa.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
High solid anaerobic digestion (HSAD) achieves the benefits of high volumetric loading rates and lower reject water production, which, however, results in much more concentrated reject water with a remarkable increase in organics and nitrogen compared with that from conventional AD with low solid content. The high concentrations of ammonium (2000-3500 mg/L) and COD (3000-4000 mg/L) were reported to exert inhibition on anammox bacteria (AnAOB), posing challenges to the application of the partial nitritation/anammox (PN/A). To date, no cases of PN/A process start-up for sludge HSAD reject water were reported. This study demonstrated the start-up process of a 480 m3/d PN/A project without anammox sludge inoculation and treating HSAD reject water from a centralized dewatered sludge treatment plant. The project did not construct new infrastructures but utilized previously constructed tanks to upgrade the process from existing short-cut nitrification-denitrification to a two-stage PN/A process. Although no external anammox sludge inoculation was performed to save seeding sludge cost, the start-up was successfully achieved in about 9 months (273 days) based on a three-step method of "AnAOB enrichment - sludge acclimation - capacity doubling". During start-up, the relative abundance of AnAOB (Candidatus_Kuenenia) increased from near zero to 12.0%. After start-up, the total inorganic nitrogen (TIN) removal load reached 0.74 kgN/(m3•d), with a total nitrogen removal efficiency of over 90%. Compared to the traditional nitrification-denitrification process, the PN/A process remarkably reduces the addition of organic chemicals and aeration energy consumption, saving approximately 4.2 million yuan (RMB) in operational costs annually. In summary, this research provides a full-scale reference for the start-up of the PN/A process treating sludge HSAD reject water.
Collapse
Affiliation(s)
- Shuyan Zhou
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Enhui Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
- National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
- National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Hang Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
- National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yanyan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Jing Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Guowei Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Azami P, Ashraf A, Yousefi O, Hosseinpour A, Nasiri A. Impact of treadmill running on distal femoral cartilage thickness: a cross-sectional study of professional athletes and healthy controls. BMC Sports Sci Med Rehabil 2024; 16:104. [PMID: 38711058 DOI: 10.1186/s13102-024-00896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE This present study aimed to assess the impact of treadmill running on distal femoral cartilage thickness. METHODS Professional athletes aged 20 to 40 years with a history of treadmill running (minimum 75 min per week for the past three months or more) and age-, sex-, and body mass index (BMI)-matched healthy controls were recruited. Demographics and clinical features of participants were recorded. Athletes were divided into subgroup 1 with less than 12 months of treadmill running and subgroup 2 with 12 months or more of treadmill running. Distal femoral cartilage thicknesses were measured at the midpoints of the right medial condyle (RMC), right intercondylar area (RIA), right lateral condyle (RLC), left medial condyle (LMC), left intercondylar area (LIA), and left lateral condyle (LLC) via ultrasonography. RESULT A total of 72 athletes (mean age: 29.6 ± 6.6 years) and 72 controls (mean age: 31.9 ± 6.7 years) were enrolled. Athletes had significantly thinner cartilages in the RLC (2.21 ± 0.38 vs. 2.39 ± 0.31 cm, p = 0.002), LLC (2.28 ± 0.37 vs. 2.46 ± 0.35 cm, p = 0.004), and LMC (2.28 ± 0.42 vs. 2.42 ± 0.36 cm, p = 0.039) compared with the control group. Furthermore, cartilage thickness was significantly thinner in subgroup 2 athletes compared with the control group in the RLC (2.13 ± 0.34 vs. 2.39 ± 0.31 cm, p = 0.001), LLC (2.22 ± 0.31 vs. 2.46 ± 0.35 cm, p = 0.005), and LMC (2.21 ± 0.46 vs. 2.42 ± 0.36 cm, p = 0.027); however, subgroup 1 athletes did not have such differences. There was a weak negative correlation between total months of treadmill running and cartilage thickness in the RLC (r = - 0.0236, p = 0.046) and LLC (r = - 0.0233, p = 0.049). No significant correlation was found between the distal femoral cartilage thickness at different sites and the patients' demographic features, including age, BMI, speed and incline of treadmill running, and minutes of running per session and week (p > 0.05). CONCLUSION Compared with healthy controls, professional athletes with a history of long-term high-intensity treadmill running had thinner femoral cartilages. The duration (months) of treadmill running was weakly negatively correlated with distal femoral cartilage thickness. Longitudinal studies with prolonged follow-ups are needed to clarify how treadmill running affects femoral cartilage thickness in athletes.
Collapse
Affiliation(s)
- Pouria Azami
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ashraf
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Yousefi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Aref Nasiri
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Treadmill Exercise Suppresses Histological Progression of Disuse Atrophy in Articular Cartilage in Rat Knee Joints during Hindlimb Suspension. Cartilage 2023; 14:482-491. [PMID: 36802945 PMCID: PMC10807736 DOI: 10.1177/19476035231154510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine the preventive effects of treadmill exercise or physiological loading on disuse atrophy in the rat knee joint cartilage and bone during hindlimb suspension. DESIGN Twenty male rats were divided into 4 experimental groups, including the control, hindlimb suspension, physiological loading, and treadmill walking groups. Histological changes in the articular cartilage and bone of the tibia were histomorphometrically and immunohistochemically evaluated 4 weeks after the intervention. RESULTS Compared with the control group, the hindlimb suspension group showed thinning of cartilage thickness, decreased matrix staining, and decreased proportion of noncalcified layers. Cartilage thinning, decreased matrix staining, and decreased noncalcified layers were suppressed in the treadmill walking group. The physiological loading group exhibited no significant suppression of cartilage thinning or decreased noncalcified layers, but the decreased matrix staining was significantly suppressed. No significant prevention of bone mass loss or changes in subchondral bone thickness were detected after physiological loading or treadmill walking. CONCLUSION Disuse atrophy of the articular cartilage caused by unloading conditions could be prevented by treadmill walking in rat knee joints.
Collapse
Affiliation(s)
- Ikufumi Takahashi
- Section of Rehabilitation, Kanazawa University Hospital, Ishikawa, Japan
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Matsuzaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hoso
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
5
|
Deng X, Xu H, Pan C, Hao X, Liu J, Shang X, Chi R, Hou W, Xu T. Moderate mechanical strain and exercise reduce inflammation and excessive autophagy in osteoarthritis by downregulating mitofusin 2. Life Sci 2023; 332:122020. [PMID: 37579836 DOI: 10.1016/j.lfs.2023.122020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
AIMS The major pathological mechanisms of osteoarthritis (OA) progression include inflammation, autophagy, and apoptosis, etc. Moderate mechanical strain and exercise effectively improve chondrocyte degeneration by reducing these adverse factors. Mitofusin 2 (MFN2) is a crucial regulatory factor associated with inflammation, autophagy and apoptosis, and its expression is regulated by exercise. This study aims to elucidate the effects of moderate mechanical strain and exercise on MFN2 expression and its influence on OA progression. MAIN METHODS Destabilization of the medial meniscus (DMM) surgery was performed on rats to induce an OA rat model. Subsequently, adeno-associated virus (overexpression/knockdown) intra-articular injection or moderate treadmill exercise was administered to evaluate the effects of these treatments on MFN2 expression and OA progression. Overexpressed plasmids and siRNA vectors were used to regulate MFN2 expression in chondrocytes. An inflammatory degeneration cell model was generated by IL-1β stimulation. Moderate mechanical strain was applied to MFN2-overexpressing cells to explore their interactions. KEY FINDINGS MFN2 overexpression aggravated inflammation by activating the NF-κB and P38 pathways and induced excessive autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby causing chondrocyte apoptosis and metabolic disorder. Moderate mechanical strain partially reversed these adverse effects. In the DMM rat model, MFN2 overexpression in articular cartilage exacerbated OA progression, whereas MFN2 knockdown and treadmill exercise alleviated cartilage degeneration, inflammation, and mechanical pain. SIGNIFICANCE MFN2 is a critical factor mediating the association between inflammation and excessive autophagy in OA progression. Moderate mechanical strain and treadmill exercise may improve OA through downregulating MFN2 expression. This study may provide a theoretical basis for exercise therapy in OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Yin Y, Zhang Y, Guo L, Li P, Wang D, Huang L, Zhao X, Wu G, Li L, Wei X. Effect of Moderate Exercise on the Superficial Zone of Articular Cartilage in Age-Related Osteoarthritis. Diagnostics (Basel) 2023; 13:3193. [PMID: 37892013 PMCID: PMC10605492 DOI: 10.3390/diagnostics13203193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the effect of exercise on the superficial zone of the osteoarticular cartilage during osteoarthritis progression. Three-month-old, nine-month-old, and eighteen-month-old Sprague Dawley rats were randomly divided into two groups, moderate exercise and no exercise, for 10 weeks. Histological staining, immunostaining, and nanoindentation measurements were conducted to detect changes in the superficial zone. X-ray and micro-CT were quantitated to detect alterations in the microarchitecture of the tibial subchondral bone. Cells were extracted from the superficial zone of the cartilage under fluid-flow shear stress conditions to further verify changes in vitro. The number of cells and proteoglycan content in the superficial zone increased more in the exercise group than in the control group. Exercise can change the content and distribution of collagen types I and III in the superficial layer. In addition, TGFβ/pSmad2/3 and Prg4 expression levels increased under the intervention of exercise on the superficial zone. Exercise can improve the Young's modulus of the cartilage and reduce the abnormal subchondral bone remodeling which occurs after superficial zone changes. Moderate exercise delays the degeneration of the articular cartilage by its effect on the superficial zone, and the TGFβ/pSmad2/3 signaling pathways and Prg4 play an important role.
Collapse
Affiliation(s)
- Yukun Yin
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Yuanyu Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Dongming Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lingan Huang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lu Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| |
Collapse
|
7
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
8
|
González-Chávez SA, López-Loeza SM, Acosta-Jiménez S, Cuevas-Martínez R, Pacheco-Silva C, Chaparro-Barrera E, Pacheco-Tena C. Low-Intensity Physical Exercise Decreases Inflammation and Joint Damage in the Preclinical Phase of a Rheumatoid Arthritis Murine Model. Biomolecules 2023; 13:biom13030488. [PMID: 36979423 PMCID: PMC10046494 DOI: 10.3390/biom13030488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Lifestyle modifications in preclinical Rheumatoid Arthritis (RA) could delay the ongoing pathogenic immune processes and potentially prevent its onset. Physical exercise (PE) benefits RA patients; however, its impact in reducing the risk of developing RA has scarcely been studied. The objective was to describe the effects of low-intensity PE applied at the disease’s preclinical phase on the joints of DBA/1 mice with collagen-induced arthritis (CIA). Twelve mice with CIA were randomly distributed into two groups: the CIA-Ex group, which undertook treadmill PE, and the CIA-NoEx, which was not exercised. The effects of PE were evaluated through clinical, histological, transcriptomics, and immunodetection analyses in the mice’s hind paws. The CIA-Ex group showed lower joint inflammation and damage and a decreased expression of RA-related genes (Tnf Il2, Il10, Il12a, IL23a, and Tgfb1) and signaling pathways (Cytokines, Chemokines, JAK-STAT, MAPK, NF-kappa B, TNF, and TGF-beta). TNF-α expression was decreased by PE in the inflamed joints. Low-intensity PE in pre-arthritic CIA reduced the severity through joint down-expression of proinflammatory genes and proteins. Knowledge on the underlying mechanisms of PE in preclinical arthritis and its impact on reducing the risk of developing RA is still needed.
Collapse
|
9
|
Pedraza-Vázquez G, Mena-Montes B, Hernández-Álvarez D, Gómez-Verjan JC, Toledo-Pérez R, López-Teros MT, Königsberg M, Gómez-Quiroz LE, Luna-López A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch Gerontol Geriatr 2023; 105:104856. [PMID: 36399890 DOI: 10.1016/j.archger.2022.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Osteosarcopenic obesity (OSO) has been associated with increase immobility, falls, fractures, and other dysfunctions, which could increase mortality risk during aging. However, its etiology remains unknown. Recent studies revealed that sedentarism, fat gain, and epigenetic regulators are critical in its development. One effective intervention to prevent and treat OSO is exercise. Therefore, in the present study, by keeping rats in conditions of sedentarism and others under a low-intensity exercise routine, we established an experimental model of OSO. We determined the degree of sarcopenia, obesity, and osteopenia at different ages and analyzed the miRNA expression during the lifespan using miRNA microarrays from gastrocnemius muscle. Interestingly microarrays results showed that there is a set of miRNAs that changed their expression with exercise. The pathway enrichment analysis showed that these miRNAs are strongly associated with immune regulation. Further inflammatory profiles with IL-6/IL-10 and TNF-α/IL-10 ratios showed that exercised rats presented a lower pro-inflammatory profile than sedentary rats. Also, the body fat gain in the sedentary group increased the inflammatory profile, ultimately leading to muscle dysfunction. Exercise prevented strength loss over time and maintained skeletal muscle functionality over time. Differential expression of miRNAs suggests that they might participate in this process by regulating the inflammatory response associated with aging, thus preventing the development of OSO.
Collapse
Affiliation(s)
- Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - Beatriz Mena-Montes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - David Hernández-Álvarez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Rafael Toledo-Pérez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Luis E Gómez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Armando Luna-López
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico.
| |
Collapse
|
10
|
Zhang F, Feng Q, Chen Y, Shi X, Qin K, Lu M, Qin F, Fu S, Guo R. Enhancement of biological nitrogen removal performance from low C/N municipal wastewater using novel carriers based on the nano-Fe 3O 4. BIORESOURCE TECHNOLOGY 2022; 363:127914. [PMID: 36113814 DOI: 10.1016/j.biortech.2022.127914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to study the effects of the magnetic microparticles (MMP) on nitrogen removal under low C/N conditions. A 30-day anaerobic/oxic progress illustrated that nitrification and denitrification were promoted in the presence of MMP. MMP could facilitate the production of extracellular polymeric substances (EPS) and act as pH buffering in aerobic conditions. The high-throughput sequencing displayed that, compared with the sludge without MMP, the relative abundance of Dokdonella and Comamonas which are capable of both nitrifying and denitrifying were 8.7% and 1.29% higher in anaerobic sludge and 7.11% and 0.97% higher in aerobic sludge with MMP, respectively. The relative abundance of Pseudomonas with the excellent capability of EPS secretion was also observed 4.33 times higher than that without MMP in the aerobic sludge. Based on the superior performance above, MMP is a promising additive to enhance nitrogen removal efficiency for low C/N wastewater.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Ying Chen
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Fan Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Shanfei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
11
|
Kaneguchi A, Ozawa J, Yamaoka K. Effects of Joint Immobilization and Treadmill Exercise on Articular Cartilage After ACL Reconstruction in Rats. Orthop J Sports Med 2022; 10:23259671221123543. [PMID: 36276424 PMCID: PMC9580101 DOI: 10.1177/23259671221123543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background: The development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction (ACLR) is an important issue. However, the appropriate rehabilitation protocol to prevent cartilage degeneration due to postoperative osteoarthritis is unclear. Purpose: To examine the effects of joint immobilization and treadmill exercise on articular cartilage after ACLR. Study Design: Controlled laboratory study. Methods: A total of 55 rats received unilateral knee ACL transection and reconstruction surgery using tail tendon autografts. After surgery, rats were reared without intervention, with joint immobilization, or with daily treadmill exercise (12 m/minute, 60 minutes/day, 6 days/week). Treadmill exercise was initiated at 3 or 14 days postoperatively. After 2 weeks of immobilization, the fixation device was removed from some of the immobilized rats, and the knee was allowed to move freely for 2 weeks. Untreated, age-matched rats (n = 8) were used as controls. At 2 or 4 weeks after starting the experiment, cartilage degeneration in the medial tibial plateau was histologically assessed using a modified Mankin score, cartilage thickness, chondrocyte density, and immunohistochemistry for cyclooxygenase-2 (COX-2) in the anterior, middle, and posterior regions. Results: After ACLR, cartilage degeneration in the anterior region characterized by increased Mankin score, accompanied with increased COX-2 expression, was detected. Joint immobilization after ACLR facilitated cartilage degeneration, which is detected by histological changes such as reductions in cartilage thickness, chondrocyte density, and high Mankin scores. Enhanced COX-2 expression in all degenerated cartilage regions was also detected. It was found that 2 weeks of remobilization could not restore cartilage degeneration induced by 2 weeks of immobilization after ACLR. Treadmill exercise after ACLR did not affect most articular cartilage parameters, regardless of the timing of exercise. Conclusion: Our results indicated that (1) immobilization after ACLR accelerates cartilage degeneration, even when applied only for 2 weeks, and (2) mild exercise during early phases after ACLR does not facilitate cartilage degeneration. Clinical Relevance: To reduce cartilage degeneration, periods of joint immobilization after ACLR should be minimized. Mild exercise during the early phases after ACLR will not negatively affect articular cartilage.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.,Junya Ozawa, PT, PhD, Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan ()
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
12
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Physiological Reloading Recovers Histologically Disuse Atrophy of the Articular Cartilage and Bone by Hindlimb Suspension in Rat Knee Joint. Cartilage 2021; 13:1530S-1539S. [PMID: 34886706 PMCID: PMC8804769 DOI: 10.1177/19476035211063857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This study aimed to clarify physiological reloading on disuse atrophy of the articular cartilage and bone in the rat knee using the hindlimb suspension model. DESIGN Thirty male rats were divided into 3 experimental groups: control group, hindlimb suspension group, and reloading after hindlimb suspension group. Histological changes in the articular cartilage and bone of the tibia were evaluated by histomorphometrical and immunohistochemical analyses at 2 and 4 weeks after reloading. RESULTS The thinning and loss of matrix staining in the articular cartilage and the decrease in bone volume induced by hindlimb suspension recovered to the same level as the control group after 2 weeks of reloading. The proportion of the noncalcified and calcified layers of the articular cartilage and the thinning of subchondral bone recovered to the same level as the control group after 4 weeks of reloading. CONCLUSIONS Disuse atrophy of the articular cartilage and bone induced by hindlimb suspension in the tibia of rats was improved by physiological reloading.
Collapse
Affiliation(s)
- Ikufumi Takahashi
- Section of Rehabilitation, Kanazawa
University Hospital, Kanazawa, Japan
- Department of Motor Function Analysis,
Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Taro Matsuzaki
- Division of Health Sciences, Graduate
School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis,
Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Masahiro Hoso
- Division of Health Sciences, Graduate
School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Zheng T, Zhou Q, Huang J, Lai J, Ji G, Kong D. Xanthohumol Inhibited Mechanical Stimulation-Induced Articular ECM Degradation by Mediating lncRNA GAS5/miR-27a Axis. Front Pharmacol 2021; 12:737552. [PMID: 34616299 PMCID: PMC8489376 DOI: 10.3389/fphar.2021.737552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is histopathologically marked by extracellular matrix (ECM) degradation in joint cartilage. Abnormal mechanical stimulation on joint cartilage may result in ECM degeneration and OA development. Matrix metalloproteinase 13 (MMP-13) is one of the catabolic enzymes contributing to the degradation of ECM, and it has become the potential biomarker for the therapeutic management of OA. Xanthohumol (XH), a naturally occurring prenylflavonoid derived from hops and beer, shows the protective activity against OA development. However, the potential mechanisms still need great effort. In this article, mechanical stimulation could significantly increase the expression of MMP-13 and lncRNA GAS5 (GAS5) and promoting ECM degradation. These could be effectively reversed by XH administration. Suppressed expression GAS5 ameliorated mechanical stimulation-induced MMP-13 expression. MiR-27a was predicted and verified as a target of GAS5, and overexpression of miR-27a down regulated the expression of MMP-13. Collectively, XH exhibited protective effects against mechanical stimulation-induced ECM degradation by mediating the GAS5/miR-27a signaling pathway in OA chondrocytes.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dechao Kong
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Song CX, Liu SY, Zhu WT, Xu SY, Ni GX. Excessive mechanical stretch‑mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 24:593. [PMID: 34165157 PMCID: PMC8222797 DOI: 10.3892/mmr.2021.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
Excessive biomechanical loading is considered an important cause of osteoarthritis. Although the mechanical responses of chondrocytes and osteoblasts have been investigated, their communication during mechanical loading and the underlying molecular mechanisms are not yet fully known. The present study investigated the effects of excessive mechanically stretched osteoblasts on the metabolism and apoptosis of chondrocytes, and also assessed the involvement of the Wnt/β‑catenin signaling pathway. In the present study, rat chondrocytes and osteoblasts were subjected to mechanical tensile strain, and an indirect chondrocyte‑osteoblast co‑culture model was established. Reverse transcription‑quantitative PCR and western blotting were performed to determine the expression levels of genes and proteins of interest. An ELISA was performed to investigate the levels of cytokines, including matrix metalloproteinase (MMP) 13, MMP 3, interleukin‑6 (IL‑6) and prostaglandin E2 (PG E2), released from osteoblasts. Flow cytometry was performed to detect the apoptosis of chondrocytes exposed to stretched osteoblast conditioned culture medium. The levels of MMP 13, IL‑6 and PG E2 increased significantly in the supernatants of stretched osteoblasts compared with the un‑stretched group. By contrast, the mRNA expression levels of Collagen 1a and alkaline phosphatase were significantly decreased in osteoblasts subjected to mechanical stretch compared with the un‑stretched group. The mRNA expression level of Collagen 2a was significantly decreased, whereas the expression levels of MMP 13 and a disintegrin and metalloproteinase with thrombospondin‑like motifs 5 were significantly increased in chondrocytes subjected to mechanical stretch compared with the un‑stretched group. In the co‑culture model, the results indicated that excessive mechanically stretched osteoblasts induced the catabolism and apoptosis of chondrocytes, which was partly inhibited by Wnt inhibitor XAV‑939. The results of the present study demonstrated that excessive mechanical stretch led to chondrocyte degradation and inhibited osteoblast osteogenic differentiation; furthermore, excessive mechanically stretched osteoblasts induced the catabolism and apoptosis of chondrocytes via the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Cheng-Xian Song
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Sheng-Yao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wen-Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shao-Yong Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo-Xin Ni
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, P.R. China
- Correspondence to: Professor Guo-Xin Ni, School of Sport Medicine and Rehabilitation, Beijing Sport University, 48 Xinxi Road, Haidian, Beijing 100084, P.R. China, E-mail:
| |
Collapse
|
16
|
Zeng N, Liao T, Chen XY, Yan ZP, Li JT, Ni GX. Treadmill running induces remodeling of the infrapatellar fat pad in an intensity-dependent manner. J Orthop Surg Res 2021; 16:354. [PMID: 34074301 PMCID: PMC8167986 DOI: 10.1186/s13018-021-02501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the response of the infrapatellar fat pad (IFP) to running at different intensities and further explore the underlying mechanisms of these responses under different running-induced loadings. METHODS Animals were randomly assigned into the sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. The rats in the LIR, MIR, and HIR groups were subjected to an 8-week treadmill running protocol. In each group, the IFP was examined at the baseline and at the 8th week to perform histomorphology, immunohistochemistry, and mRNA expression analyses. RESULTS Compared with LIR and MIR, HIR for 8 weeks led to a substantial increase in the surface cellularity (1.67 ± 1.15), fibrosis (1.29 ± 0.36), and vascularity (33.31 ± 8.43) of the IFP but did not increase IFP inflammation or M1 macrophage polarization. Low-to-medium-intensity running resulted in unchanged or decreased fibrosis, vascularity, and surface cellularity in the IFP compared to those of the SED group. Furthermore, serum leptin and visfatin levels were significantly lower in the LIR and MIR groups than in the SED group or the HIR group (P < 0.05). CONCLUSION The effect of running on IFP remodeling was intensity dependent. In contrast to LIR and MIR, HIR increased the fibrosis and vascularity of the IFP. HIR-induced IFP fibrosis was probably due to mechanical stress, rather than pathological proinflammatory M1/M2 polarization.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Yan Z, Zeng N, Li J, Liao T, Ni G. Cardiac Effects of Treadmill Running at Different Intensities in a Rat Model. Front Physiol 2021; 12:774681. [PMID: 34912240 PMCID: PMC8667026 DOI: 10.3389/fphys.2021.774681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: In this study, we investigated the effect of treadmill exercise training on cardiac hypertrophy, collagen deposition, echo parameters and serum levels of cardiac troponin I (cTnI) in rats, and how they differ with various exercise intensities, hence exploring potential signal transduction. Methods: Male Sprague-Dawley rats were randomly divided into sedentary (SED), low-intensity running (LIR), medium-intensity running (MIR), and high-intensity running (HIR) groups. Each exercise group had 3 subgroups that were sacrificed for cardiac tissue analyses at 1, 4, and 8 weeks, respectively, and all rats participated in a daily 1 h treadmill routine 5 days per week. Echocardiographic measurements were performed 24 h after the last exercise session. Additionally, myocardium samples and blood were collected for histological and biochemical examinations. Changes in the extracellular signal-regulated kinases 1/2 (ERK1/2) signal pathway were detected by Western blotting. Results: After a week of running, ventricular myocyte size and the phosphorylation of ERK1/2 increased in the HIR group, while left ventricular (LV) diastolic diameter values and LV relative wall thickness increased in the LIR and MIR groups. In addition, we observed heart enlargement, cTnI decrease, and ERK1/2 signal activation in each of the exercise groups after 4 weeks of running. However, the HIR group displayed substantial rupture and increased fibrosis in myocardial tissue. In addition, compared with the LIR and MIR groups, 8 weeks of HIR resulted in structural damage, fiber deposition, and increased cTnI. However, there was no difference in the activation of ERK1/2 signaling between the exercise and SED groups. Conclusion: The effect of running on cardiac hypertrophy was intensity dependent. In contrast to LIR and MIR, the cardiac hypertrophy induced by 8 weeks of HIR was characterized by potential cardiomyocyte injury, which increased the risk of pathological development. Furthermore, the ERK signaling pathway was mainly involved in the compensatory hypertrophy process of the myocardium in the early stage of exercise and was positively correlated with exercise load. However, long-term exercise may attenuate ERK signaling activation.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jieting Li
- Department of Rehabilitation Medicine, Fuzhou Second Affiliated Hospital, Xiamen University, Fuzhou, China
| | - Tao Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Guoxin Ni,
| |
Collapse
|
18
|
Schütz U, Ehrhardt M, Göd S, Billich C, Beer M, Trattnig S. A mobile MRI field study of the biochemical cartilage reaction of the knee joint during a 4,486 km transcontinental multistage ultra-marathon using T2* mapping. Sci Rep 2020; 10:8157. [PMID: 32424133 PMCID: PMC7235258 DOI: 10.1038/s41598-020-64994-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/21/2020] [Indexed: 02/08/2023] Open
Abstract
Nearly nothing is known about the consequences of ultra-long-distance running on knee cartilage. In this mobile MRI field study, we analysed the biochemical effects of a 4,486 km transcontinental multistage ultra-marathon on femorotibial joint (FTJ) cartilage. Serial MRI data were acquired from 22 subjects (20 male, 18 finisher) using a 1.5 T MR scanner mounted on a 38-ton trailer, travelling with the participants of the TransEurope FootRace (TEFR) day by day over 64 stages. The statistical analyses focused on intrachondral T2* behaviour during the course of the TEFR as the main outcome variable of interest. T2* mapping (sagittal FLASH T2* weighted gradient echo) is a validated and highly accurate method for quantitative compositional cartilage analysis of specific weightbearing areas of the FTJ. T2* mapping is sensitive to changes in the equilibrium of free intrachondral water, which depends on the content and orientation of collagen and the proteoglycan content in the extracellular cartilage matrix. Within the first 1,100 km, a significant running load-induced T2* increase occurred in all joint regions: 44.0% femoral-lateral, 42.9% tibial-lateral, 34.9% femoral-medial, and 25.1% tibial-medial. Osteochondral lesions showed no relevant changes or new occurrence during the TEFR. The reasons for stopping the race were not associated with knee problems. As no further T2* elevation was found in the second half of the TEFR but a decreasing T2* trend (recovery) was observed after the 3,500 km run, we assume that no further softening of the cartilage occurs with ongoing running burden over ultra-long distances extending 4,500 km. Instead, we assume the ability of the FTJ cartilage matrix to reorganize and adapt to the load.
Collapse
Affiliation(s)
- Uwe Schütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany.
| | - Martin Ehrhardt
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Sabine Göd
- MR Centre of Excellence- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| | - Christian Billich
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Siegfried Trattnig
- MR Centre of Excellence- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| |
Collapse
|
19
|
Martins JB, Mendonça VA, Aguiar GC, da Fonseca SF, Dos Santos JM, Tossige-Gomes R, Melo DDS, Oliveira MX, Leite HR, Camargos ACR, Ferreira AJ, Coimbra CC, Poortmans J, Oliveira VC, Silva SB, Domingues TE, Bernardo-Filho M, Lacerda ACR. Effect of a Moderate-Intensity Aerobic Training on Joint Biomarkers and Functional Adaptations in Rats Subjected to Induced Knee Osteoarthritis. Front Physiol 2019; 10:1168. [PMID: 31620012 PMCID: PMC6759700 DOI: 10.3389/fphys.2019.01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background Knee osteoarthritis (kOA) is a common chronic disease that induces changes in redox status and inflammatory biomarkers, cell death, and motor impairment. Aerobic training can be a non-pharmacological alternative to prevent the progression of the disease. Objective To evaluate the effects of an 8 weeks moderate-intensity treadmill aerobic training program on redox status and inflammatory biomarkers and motor performance in kOA-like changes induced by monosodium iodoacetate (MIA) in rats. Methods Twenty-seven rats were randomly divided into three groups: SHAM; induced kOA (OA); and induced kOA + aerobic training (OAE). Motor performance was evaluated by the number of falls on rotarod test, the total time of displacement and the number of failures on a 100 cm footbridge. Data for cytokines and histology were investigated locally, whereas plasma was used for redox status biomarkers. Results The OA group, compared to the SHAM group, increased 1.13 times the total time of displacement, 6.05 times the number of failures, 2.40 times the number of falls. There was also an increase in cytokine and in thiobarbituric acid reactive substances (TBARS) (IL1β: 5.55-fold, TNF: 2.84-fold, IL10: 1.27-fold, IL6: 1.50-fold, TBARS: 1.14-fold), and a reduction of 6.83% in the total antioxidant capacity (FRAP), and of 35% in the number of chondrocytes. The aerobic training improved the motor performance in all joint function tests matching to SHAM scores. Also, it reduced inflammatory biomarkers and TBARS level at values close to those of the SHAM group, with no change in FRAP level. The number of falls was explained by IL1β and TNF (58%), and the number of failures and the total time of displacement were also explained by TNF (29 and 21%, respectively). Conclusion All findings indicate the efficacy of moderate-intensity aerobic training to regulate inflammatory biomarkers associated with improved motor performance in induced kOA-like changes, thus preventing the loss of chondrocytes.
Collapse
Affiliation(s)
- Jeanne Brenda Martins
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Grazielle Cordeiro Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Jousielle Márcia Dos Santos
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Dirceu de Sousa Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Hércules Ribeiro Leite
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | | | - Anderson José Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jacques Poortmans
- Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Vinícius Cunha Oliveira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Mário Bernardo-Filho
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
20
|
Karanfil Y, Babayeva N, Dönmez G, Diren HB, Eryılmaz M, Doral MN, Korkusuz F. Thirty Minutes of Running Exercise Decreases T2 Signal Intensity but Not Thickness of the Knee Joint Cartilage: A 3.0-T Magnetic Resonance Imaging Study. Cartilage 2019; 10:444-450. [PMID: 29676169 PMCID: PMC6755866 DOI: 10.1177/1947603518770246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Recent studies showed a potential of magnetic resonance imaging (MRI), which can be used as an additional tool for diagnosing cartilage degeneration in the early stage. We designed a cross-sectional study in order to evaluate knee joint cartilage adaptation to running, using 3.0-T MRI equipped with the 3-dimensional turbo spin echo (VISTA = Volume ISotropic Turbo spin echo Acquisition) software. By this thickness (mm) and signal intensity (mean pixel value) can be quantified, which could be closely related to the fluid content of the knee joint cartilage, before and after running. METHODS A total of 22 males, aged 18 to 35 years, dominant (right) and nondominant (left) knees were assessed before and after 30 minutes of running. Cartilage thickness and signal intensity of surfaces of the patella, medial and lateral femoral and tibial condyles were measured. RESULTS Cartilage thickness of the lateral condyle decreased at the dominant knee, while it increased at the medial tibial plateau. Signal intensity decreased at all locations, except the lateral patella in both knees. The most obvious decrease in signal intensity (10.6%) was at the medial tibial plateau from 949.8 to 849.0 of the dominant knee. CONCLUSION There was an increase in thickness measurements and decrease in signal intensity in medial tibial plateau of the dominant knee after 30 minutes of running. This outcome could be related to fluid outflow from the tissue. Greater reductions in the medial tibial plateau cartilage indicate greater load sharing by these areas of the joint during a 30-minute running.
Collapse
Affiliation(s)
| | - Naila Babayeva
- Department of Sports Medicine, Hacettepe University, Ankara, Turkey
| | - Gürhan Dönmez
- Department of Sports Medicine, Hacettepe University, Ankara, Turkey
| | - H. Barış Diren
- Department of Radiology, Medicana International Ankara Hospital, Ankara, Turkey
| | | | - Mahmut Nedim Doral
- Department of Orthopaedics and Traumatology, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Hacettepe University, Ankara, Turkey,Feza Korkusuz, Hacettepe Üniversitesi Tıp Fakültesi Hastaneleri, Spor Hekimliği AD, Sıhhiye, Ankara 06100, Turkey.
| |
Collapse
|
21
|
Zhang H, Ji L, Yang Y, Wei Y, Zhang X, Gang Y, Lu J, Bai L. The Therapeutic Effects of Treadmill Exercise on Osteoarthritis in Rats by Inhibiting the HDAC3/NF-KappaB Pathway in vivo and in vitro. Front Physiol 2019; 10:1060. [PMID: 31481898 PMCID: PMC6710443 DOI: 10.3389/fphys.2019.01060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a disease characterized by non-bacterial inflammation. Histone deacetylase 3 (HDAC3) is a crucial positive regulator in the inflammation that leads to the development of non-OA inflammatory disease. However, the precise involvement of HDAC3 in OA is still unknown, and the underlying mechanism of exercise therapy in OA requires more research. We investigated the involvement of HDAC3 in exercise therapy-treated OA. Expression levels of HDAC3, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), matrix metalloproteinase-13 (MMP-13), HDAC3 and nuclear factor-kappaB (NF-kappaB) were measured by western blotting, reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. Cartilage damage and OA evaluation were measured by hematoxylin and eosin staining and Toluidine blue O staining according to the Mankin score and OARSI score, respectively. We found that moderate-intensity treadmill exercise could relieve OA. Meanwhile, the expression of HDAC3, MMP-13, ADAMTS-5 and NF-kappaB decreased, and collagen II increased in the OA + moderate-intensity treadmill exercise group (OAM) compared with the OA group (OAG) or OA + high- or low-intensity treadmill exercise groups (OAH or OAL). Furthermore, we found the selective HDAC3 inhibitor RGFP966 could also alleviate inflammation in OA rat model through inhibition of nuclear translocation of NF-kappaB. To further explore the relationship between HDAC3 and NF-kappaB, we investigated the change of NF-kappaB relocation in IL-1β-treated chondrocytes under the stimulation of RGFP966. We found that RGFP966 could inhibit the expression of inflammatory markers of OA via regulation of HDAC3/NF-kappaB pathway. These investigations revealed that RGFP966 is therefore a promising new drug for treating OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Jinghan Lu
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
23
|
Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y, Bai L. The therapeutic effects of lipoxin A4 during treadmill exercise on monosodium iodoacetate-induced osteoarthritis in rats. Mol Immunol 2018; 103:35-45. [DOI: 10.1016/j.molimm.2018.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
|
24
|
Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. J Physiol 2018; 597:1271-1281. [PMID: 29917242 DOI: 10.1113/jp275451] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
The articular cartilage is exquisitely sensitive to mechanical load. Its structure is largely defined by the mechanical environment and destruction in osteoarthritis is the pathophysiological consequence of abnormal mechanics. It is often overlooked that disuse of joints causes profound loss of volume in the articular cartilage, a clinical observation first described in polio patients and stroke victims. Through the 1980s, the results of studies exploiting experimental joint immobilisation supported this. Importantly, this substantial body of work was also the first to describe metabolic changes that resulted in decreased synthesis of matrix molecules, especially sulfated proteoglycans. The molecular mechanisms that underlie disuse atrophy are poorly understood despite the identification of multiple mechanosensing mechanisms in cartilage. Moreover, there has been a tendency to equate cartilage loss with osteoarthritic degeneration. Here, we review the historic literature and clarify the structural, metabolic and clinical features that clearly distinguish cartilage loss due to disuse atrophy and those due to osteoarthritis. We speculate on the molecular sensing pathways in cartilage that may be responsible for cartilage mechanoadaptation.
Collapse
Affiliation(s)
- Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Angus K T Wann
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model. Int J Mol Sci 2018; 19:ijms19061653. [PMID: 29865282 PMCID: PMC6032207 DOI: 10.3390/ijms19061653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
We analyzed the influence of treadmill running on rheumatoid arthritis (RA) joints using a collagen-induced arthritis (CIA) rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old), CIA group (induced CIA at 8-weeks-old), and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV) was significantly decreased in the CIA group. Marrow star volume (MSV), an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP) staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.
Collapse
|
26
|
Xu SY, Liu SY, Xu L, Deng SY, He YB, Li SF, Ni GX. Response of decorin to different intensity treadmill running. Mol Med Rep 2018; 17:7911-7917. [PMID: 29620182 DOI: 10.3892/mmr.2018.8802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Decorin is widely understood to affect collagen fibrillogenesis. However, little is understood about its response to various mechanical loading conditions. In the present study, 36 Wistar rats were randomly divided into control (CON), moderate treadmill running (MTR) and strenuous treadmill running (STR) groups. Animals in the MTR and STR groups were subjected to a 4‑ or 8‑week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological and biochemical analyses. Decorin expression was markedly increased in the MTR group compared with the CON group at 4 and 8 weeks. Conversely, decorin expression was markedly decreased in the STR group compared with the CON and MTR group at 4 and 8 weeks. Furthermore, between the two time points, decorin expression levels were significantly increased in the MTR group, whereas they were markedly decreased in the STR group. These results suggested that MTR exercise may induce increased decorin expression via a balance of MMP‑2 and TIMP‑2, improving tendon structure and function. However, STR exercise may result in degradation of decorin due to an imbalance of MMP‑2 and TIMP‑2, with a bias to MMP‑2, resulting in a predisposition to tendinopathy.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sheng-Yao Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Song-Yun Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong-Bin He
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
27
|
Zeng N, Wu D, Chen XY, Ni GX. Risk of Developing Running-Related Osteoarthritis is Intensity-Dependent: Comment on the Article by Lo et al. Arthritis Care Res (Hoboken) 2018; 70:956-957. [PMID: 28544503 DOI: 10.1002/acr.23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ni Zeng
- First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Di Wu
- First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xin-Yuan Chen
- First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guo-Xin Ni
- First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Liu SY, Li Z, Xu SY, Xu L, Yang M, Ni GX. Intensity‑dependent effect of treadmill running on differentiation of rat bone marrow stromal cells. Mol Med Rep 2018; 17:7746-7756. [PMID: 29620179 PMCID: PMC5983966 DOI: 10.3892/mmr.2018.8797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
The effect of running on bone mass depends on its intensity. However, the underlying molecular mechanism that associates running intensity with bone mass is unclear. The current study examined the effects of treadmill running at different intensities on bone mass and osteogenic differentiation of bone marrow stromal cells (BMSCs) in a rat model. A total of 24 male Wistar rats were randomly divided into groups and subjected to no running (Con group), low‑intensity running (LIR group), moderate‑intensity running (MIR group), and high‑intensity running (HIR group). Histological, immunohistochemistry and micro‑CT examinations were performed on the femora harvested after 8 weeks of treadmill running. The study demonstrated that treadmill running affected trabecular bone mass in an intensity‑dependent manner. In addition, such an intensity‑dependent effect was also demonstrated on the osteogenic and adipogenic differentiation and proliferation of BMSCs. Furthermore, the Wnt/β‑catenin signaling pathway may be involved in the running‑induced increase in bone mass in rats in the MIR group. There appears to be a biomechanical 'window', in which running‑induced strain signals can increase the number of BMSCs and progenitor cells (specific to the osteoblast lineage) causing upregulation of osteogenesis and downregulation of adipogenesis of BMSCs. This finding may provide insight into the molecular and cellular mechanisms responsible for bone homeostasis.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhe Li
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shao-Yong Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Xu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Professor Mo Yang, Department of Hematology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| | - Guo-Xin Ni
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor Guo-Xin Ni, Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| |
Collapse
|
29
|
Xu SY, He YB, Deng SY, Liu SY, Xu L, Ni GX. Intensity-dependent effect of treadmill running on rat Achilles tendon. Exp Ther Med 2018; 15:5377-5383. [PMID: 29805550 PMCID: PMC5958711 DOI: 10.3892/etm.2018.6084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
It is understood that mechanical loading may affect tendon properties. However, how different mechanical loading conditions may affect tendons remains unknown. The present study aimed to investigate the effect of treadmill running at various intensities on rat Achilles tendon. A total of 18 male Wistar rats were randomly assigned to one of three groups: Control (CON), medium-intensity running (MIR), and high-intensity running (HIR). Following 8 weeks of treadmill running protocols, all Achilles tendons were harvested for histological observation and gene expression analysis. Significant morphological changes were observed with regular and large diameter collagen fibrils in the MIR group, whereas irregular and small diameter collagen fibrils were observed in the HIR group. Collagen type I was significantly upregulated in the MIR group compared with the CON group, and downregulated in the HIR group compared with the CON or MIR groups (P<0.05). However, collagen type III was significantly upregulated in the HIR group in comparison with the CON or MIR groups (P<0.05). Furthermore, the expression of matrix metallopeptidase-13 was significantly increased in the MIR and HIR groups compared with the CON group (P<0.05). The expression of tissue inhibitor of metalloproteinases-1 was increased in the MIR group compared with the CON group, but decreased in the HIR group compared with the CON and MIR groups (P<0.05). Additionally, decorin expression was significantly higher in the MIR group compared with the CON group, and significantly decreased in the HIR group compared with the CON or MIR groups (P<0.05). A converse pattern of changes in biglycan expression was identified among the three groups. Aggrecan expression was significantly higher in the HIR group compared with the CON or MIR groups (P<0.05). These findings indicated that moderate exercise may induce increased collagen synthesis and organize regular and large collagen fibers, thus benefiting the Achilles tendon. However, overuse during exercise may result in collagen degradation and disturbance, which predisposes individuals to injury.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong-Bin He
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Song-Yun Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sheng-Yao Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor Guo-Xin Ni, Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| |
Collapse
|
30
|
Quantifying the Effects of Different Treadmill Training Speeds and Durations on the Health of Rat Knee Joints. SPORTS MEDICINE-OPEN 2018; 4:15. [PMID: 29610999 PMCID: PMC5880791 DOI: 10.1186/s40798-018-0127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/11/2018] [Indexed: 12/22/2022]
Abstract
Background Walking and running provide cyclical loading to the knee which is thought essential for joint health within a physiological window. However, exercising outside the physiological window, e.g. excessive cyclical loading, may produce loading conditions that could be detrimental to joint health and lead to injury and, ultimately, osteoarthritis. The purpose of this study was to assess the effects of a stepwise increase in speed and duration of treadmill training on knee joint integrity and to identify the potential threshold for joint damage. Methods Twenty-four Sprague-Dawley rats were randomized into four groups: no exercise, moderate duration, high duration, and extra high duration treadmill exercise. The treadmill training consisted of a 12-week progressive program. Following the intervention period, histologic serial sections of the left knee were graded using a modified Mankin Histology Scoring System. Mechanical testing of the tibial plateau cartilage and RT-qPCR analysis of mRNA from the fat pad, patellar tendon, and synovium were performed for the right knee. Kruskal-Wallis testing was used to assess differences between groups for all variables. Results There were no differences in cartilage integrity or mechanical properties between groups and no differences in mRNA from the fat pad and patellar tendon. However, COX-2 mRNA levels in the synovium were lower for all animals in the exercise intervention groups compared to those in the no exercise group. Conclusions Therefore, these exercise protocols did not exceed the joint physiological window and can likely be used safely in aerobic exercise intervention studies without affecting knee joint health.
Collapse
|
31
|
Moshtagh PR, Korthagen NM, Plomp SG, Pouran B, Castelein RM, Zadpoor AA, Weinans H. Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats. JBMR Plus 2018; 2:134-142. [PMID: 30283898 DOI: 10.1002/jbm4.10029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Parisa R Moshtagh
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Nicoline M Korthagen
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Saskia G Plomp
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Behdad Pouran
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Rene M Castelein
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands
| | - Amir A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands.,Department of Rheumatology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
32
|
Chang NJ, Lee KW, Chu CJ, Shie MY, Chou PH, Lin CC, Liang PI. A Preclinical Assessment of Early Continuous Passive Motion and Treadmill Therapeutic Exercises for Generating Chondroprotective Effects After Anterior Cruciate Ligament Rupture. Am J Sports Med 2017; 45:2284-2293. [PMID: 28520463 DOI: 10.1177/0363546517704847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injury is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA). However, whether using continuous passive motion (CPM) with or without additional treadmill exercise (TRE) in early ACL injury might provide chondroprotective effects and further decrease the risk of PTOA has yet to be determined. HYPOTHESIS CPM may offer an enhanced chondroprotective effect, but TRE may attenuate that effect due to the mechanical stress on the joint and inflammatory cytokines in the joint. STUDY DESIGN Controlled laboratory study. METHODS Thirty adult New Zealand White male rabbits were randomly allocated to sedentary (SED), CPM, TRE, or CPM+TRE groups. Each rabbit underwent an ACL transection (ACLT) on the right knee, with the contralateral knee used as an internal control (sham). The 4 joint surfaces (ie, medial and lateral femoral condyles and tibial plateaus) were evaluated 4 weeks after surgery for gross appearance, histological characteristics, and quantitative osteoarthritis (OA) scores. RESULTS Overall, at the end of testing, the CPM group experienced the best protective therapeutic effects in all compartments. In gross appearance, CPM resulted in normal articular surfaces, while the TRE and SED groups exhibited surface abrasion. Histological analysis showed significant differences in articular cartilage status. The CPM group had significantly better histological OA scores ( P < .01), corresponding to the smoothest cartilage surface and sound chondrocyte and collagen arrangement. This group also showed abundant glycosaminoglycan (GAG) content and a sound growth microenvironment, with significantly lower expression levels of the inflammatory cytokine tumor necrosis factor α and the apoptotic marker caspase 3. In contrast, the TRE and SED groups showed several features of damage: distinct graded cartilage abrasion; damaged collagen fibers, corresponding to noticeable collagen type X (osteoarthritic cartilage); reduced cartilage thickness; fewer cartilaginous cells; and the appearance of chondrocyte clusters. These groups also showed loss of GAG, corresponding to higher levels of inflammatory cytokines and apoptosis of articular chondrocytes. Furthermore, the CPM+TRE group displayed visible pathological changes in the superficial cartilage, indicating that early loading exercise may contribute to osteoarthritis. The sham treatment showed no difference in the changes in all compartments between groups. CONCLUSION Immediate CPM therapy produces a superior in situ microenvironment for reducing the occurrence of PTOA after ACL injury without reconstruction in rabbits. CLINICAL RELEVANCE These data suggest that immediate application of CPM therapy may be necessary to create a sound microenvironment in joints and possibly to decrease the risk of PTOA without or while awaiting ACL reconstruction. In contrast, both early active loading exercise and inactivity lead to the development of PTOA.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kuan-Wei Lee
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, North District, Taichung City, Taiwan
| | - Pei-Hsi Chou
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Yongkang District, Tainan City, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
33
|
Impact of a daily exercise dose on knee joint cartilage - a systematic review and meta-analysis of randomized controlled trials in healthy animals. Osteoarthritis Cartilage 2017; 25:1223-1237. [PMID: 28323138 DOI: 10.1016/j.joca.2017.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the impact of a daily exercise dose on cartilage composition and thickness, by conducting a systematic review of randomized controlled trials (RCTs) involving healthy animals. METHODS A narrative synthesis of the effect of a daily exercise dose on knee cartilage aggrecan, collagen and thickness was performed. A subset of studies reporting sufficient data was combined in meta-analysis using a random-effects model. Meta-regression analyses were performed to investigate the impact of covariates. RESULTS Twenty-nine RCTs, involving 64 comparisons, were included. In the low dose exercise group, 21/25 comparisons reported decreased or no effect on cartilage aggrecan, collagen and thickness. In the moderate dose exercise group, all 12 comparisons reported either no or increased effect. In the high dose exercise group, 19/27 comparisons reported decreased effect. A meta-analysis of 14 studies investigating cartilage thickness showed no effect in the low dose exercise group (SMD -0.02; 95% CI -0.42 to 0.38; I2 = 0.0%), large but non-significant cartilage thickening in the moderate dose exercise group (SMD 0.95; 95% CI -0.33 to 2.23; I2 = 72.1%) and non-significant cartilage thinning in the high dose exercise group (SMD -0.19; 95% CI -0.49 to 0.12; I2 = 0.0%). Results were independent of analyzed covariates. The overall quality of the studies was poor because of inadequate reporting of data and high risk of bias. CONCLUSIONS Our results suggest that the relationship between daily exercise dose and cartilage composition, but not necessarily cartilage thickness, may be non-linear. While we found inconclusive evidence for a low daily dose of exercise, a high daily dose of exercise may have negative effects and a moderate daily dose of exercise may have positive effects on cartilage matrix composition in healthy animals.
Collapse
|
34
|
The effects of different frequency treadmill exercise on lipoxin A4 and articular cartilage degeneration in an experimental model of monosodium iodoacetate-induced osteoarthritis in rats. PLoS One 2017; 12:e0179162. [PMID: 28594958 PMCID: PMC5464632 DOI: 10.1371/journal.pone.0179162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/24/2017] [Indexed: 11/29/2022] Open
Abstract
The aim was to investigate the effects of different frequencies treadmill exercise with total exercise time being constancy on articular cartilage, lipoxin A4 (LXA4) and the NF-κB pathway in rat model of monosodium iodoacetate-induced osteoarthritis (OA). Fifty male Sprague-Dawley rats were randomly divided into five groups (n = 10): controls (CG), knee OA model (OAG), OA + treadmill exercise once daily (OAE1), OA + treadmill exercise twice daily, rest interval between exercise>4h (OAE2) and OA + treadmill exercise three times daily, rest interval between exercise>4h (OAE3). Rats were evaluated after completing the treadmill exercise program (speed, 18 m/min; total exercise time 60 min/day; 5 days/week for 8 weeks). Interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and LXA4 in serum and intra-articular lavage fluid were measured by ELISA. Changes in articular cartilage were evaluated by histology, immunohistochemistry, western blotting and quantitative real-time-PCR. LXA4 in the serum and intra-articular lavage fluid increased in all OAE groups, and histological evaluation indicated that the OAE3 group had the best treatment response. The expression of COL2A1 and IκB-β in articular cartilage increased in all OAE groups vs the OAG group, whereas expression of IL-1β, TNF-α, matrix metalloproteinase (MMP)-13, and NF-κB p65 was reduced in all OAE groups compared with the OAG. Under the condition of 60 min treadmill exercise with moderate-intensity, to fulfill in three times would have better chondroprotective effects than to fulfill in two or one time on monosodium iodoacetate-induced OA in rats. And it may be worked through the anti-inflammatory activity of LXA4 and the NF-κB pathway.
Collapse
|
35
|
Liu SY, He YB, Deng SY, Zhu WT, Xu SY, Ni GX. Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. INTERNATIONAL ORTHOPAEDICS 2017; 41:1199-1209. [PMID: 28364139 DOI: 10.1007/s00264-017-3441-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
Both bone marrow mesenchymal stromal cells (BMSCs) and adipose-derived mesenchymal stromal cells (ADSCs) are good sources for tissue engineering. To maximize therapeutic efficacy of MSCs, an appropriate source of MSCs should be selected according to their own inherent characteristics for future clinical application. Hence, this study was conducted to compare proliferative, differential and antiapoptosis abilities of both MSCs derived from exercised and sedentary rats under normal and hypoxia/serum deprivation conditions (H/SD). Our results showed that exercise may enhance proliferative ability and decrease adipogenic ability of BMSCs and ADSCs. However, positive effect of exercise on osteogenesis was only observed for BMSCs in either environment. Little effect was observed on the antiapoptotic ability of both MSC types. It was also suggested that biological characteristics of both types were partly changed. It is therefore believed that BMSCs derived from exercised rat on early passage may be a good cell source for bone tissue engineering.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Yong-Bin He
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Song-Yun Deng
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Wen-Ting Zhu
- Biomaterial Research Center, School of pharmaceutical sciences, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Shao-Yong Xu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Guo-Xin Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China.
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
36
|
Li Z, Liu SY, Xu L, Xu SY, Ni GX. Effects of treadmill running with different intensity on rat subchondral bone. Sci Rep 2017; 7:1977. [PMID: 28512292 PMCID: PMC5434052 DOI: 10.1038/s41598-017-02126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
Subchondral bone (SB) is recognized as a key factor in normal joint protection, not only does it provide a shock absorbing and supportive function for the cartilage, but it may also be important for cartilage metabolism. Mechanical loading is considered to be a critical regulator of skeletal homeostasis, including bone and cartilage. It is suggested that both cartilage and bone may respond to mechanical loading in an intensity-dependent manner. In this report, we have discovered that the subchondral plate became thicker with higher bone mineral density (BMD) and lower porosity, while trabecular bone became more plate-like and denser with higher BMD in high-intensity running (HIR) group. Further, HIR led to highly remodeled, less mineralized, and stiffer subchondral plate and trabecular bone. On the contrary, low-intensity running and moderate-intensity running failed to result in considerable changes in microstructure, composition and hardness. Our findings suggested that running affects SB in an intensity-dependent manner. In addition, HIR may induce change in organization and composition of SB, and consequently alter its mechanical properties. HIR-induced "brittle and stiff" SB may adversely affect the overlying articular cartilage.
Collapse
Affiliation(s)
- Zhe Li
- Department of Orthopaedics and Traumatology, Zhengzhou Orthopaedics Hospital, Zhengzhou, China
| | - Sheng-Yao Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fujian, China.
| |
Collapse
|
37
|
Bertelsen ML, Hulme A, Petersen J, Brund RK, Sørensen H, Finch CF, Parner ET, Nielsen RO. A framework for the etiology of running-related injuries. Scand J Med Sci Sports 2017; 27:1170-1180. [PMID: 28329441 DOI: 10.1111/sms.12883] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 11/29/2022]
Abstract
The etiology of running-related injury is important to consider as the effectiveness of a given running-related injury prevention intervention is dependent on whether etiologic factors are readily modifiable and consistent with a biologically plausible causal mechanism. Therefore, the purpose of the present article was to present an evidence-informed conceptual framework outlining the multifactorial nature of running-related injury etiology. In the framework, four mutually exclusive parts are presented: (a) Structure-specific capacity when entering a running session; (b) structure-specific cumulative load per running session; (c) reduction in the structure-specific capacity during a running session; and (d) exceeding the structure-specific capacity. The framework can then be used to inform the design of future running-related injury prevention studies, including the formation of research questions and hypotheses, as well as the monitoring of participation-related and non-participation-related exposures. In addition, future research applications should focus on addressing how changes in one or more exposures influence the risk of running-related injury. This necessitates the investigation of how different factors affect the structure-specific load and/or the load capacity, and the dose-response relationship between running participation and injury risk. Ultimately, this direction allows researchers to move beyond traditional risk factor identification to produce research findings that are not only reliably reported in terms of the observed cause-effect association, but also translatable in practice.
Collapse
Affiliation(s)
- M L Bertelsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - A Hulme
- Australian Collaboration for Research into Injury in Sport and its Prevention, Federation University Australia, Ballarat, Vic., Australia
| | - J Petersen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - R K Brund
- Department of Health Science and Technology, Aalborg University, SMI®, Aalborg, Denmark
| | - H Sørensen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - C F Finch
- Australian Collaboration for Research into Injury in Sport and its Prevention, Federation University Australia, Ballarat, Vic., Australia
| | - E T Parner
- Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - R O Nielsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
38
|
Can Early Rehabilitation Prevent Posttraumatic Osteoarthritis in the Patellofemoral Joint after Anterior Cruciate Ligament Rupture? Understanding the Pathological Features. Int J Mol Sci 2017; 18:ijms18040829. [PMID: 28420082 PMCID: PMC5412413 DOI: 10.3390/ijms18040829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
Knee instability resulting from anterior cruciate ligament (ACL) rupture is a high-risk factor for posttraumatic osteoarthritis (PTOA) in the patellofemoral joint (PFJ). However, whether non-weight-bearing and weight-bearing treatments have chondroprotective effects remains unclear. Twenty-four adult New Zealand White male rabbits were employed in this study. All animals received ACL transection in the right knee and sham surgery in the left knee. The rabbits were randomly assigned to the following groups: (I) In the sedentary (SED) group, the rabbits (n = 6) were simply kept in their cage; (II) In the continuous passive motion (CPM) group, the rabbits (n = 6) performed CPM exercise for 7 days, starting from the first postoperative day; (III) In the active treadmill exercise (TRE) group, the rabbits (n = 6) performed TRE for 2 weeks; (IV) In the CPM + TRE group, the rabbits (n = 6) executed CPM exercise, followed by TRE. Two joint surfaces (the retropatella and femoral trochlear groove) were assessed at 4 weeks after operation. Although the gross appearance in each group was comparable, histological examination revealed significant differences in the articular cartilage status. The CPM group exhibited a greater thickness of articular cartilage, maintenance of tidemark continuity, abundant glycosaminoglycan (GAG), and significantly lower inflammatory cytokine 9, e.g., tumor necrosis factor-alpha (TNF-α) 0 levels, with modest cell apoptosis (i.e., caspase-3). By contrast, the TRE group displayed the worst pathological features: an irregular cartilage surface and chondrocyte disorganization, reduced cartilage thickness, breakdown of the tidemark, depletion of collagen fibers, loss of GAG, and the highest levels of TNF-α and caspase-3 expression. Furthermore, the CPM + TRE group had more favorable outcomes than the SED group, indicating that suitable exercise is needed. The sham treatment displayed no variance in the changes in the two joint surfaces among groups. These data indicate that the application of early CPM rehabilitation is suggested for subjects in order to decrease the risk of PTOA without ACL reconstruction in the PFJ compartment in rabbits. The early TRE program, however, had harmful outcomes. Additionally, inactivity was discovered to initiate the development of PTOA.
Collapse
|
39
|
Xu SY, Li SF, Ni GX. Strenuous Treadmill Running Induces a Chondrocyte Phenotype in Rat Achilles Tendons. Med Sci Monit 2016; 22:3705-3712. [PMID: 27742920 PMCID: PMC5070615 DOI: 10.12659/msm.897726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although tendinopathy is common, its underlying pathogenesis is poorly understood. This study aimed to investigate the possible pathogenesis of tendinopathy. MATERIAL AND METHODS In this study, a total of 24 rats were randomly and evenly divided into a control (CON) group and a strenuous treadmill running (STR) group. Animals in the STR group were subjected to a 12-week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological observation or biochemical analyses. RESULTS Histologically, hypercellularity and round cells, as well as disorganized collagen fibrils, were presented in rat Achilles tendon sections from the STR group. Furthermore, our results showed that the expression of aggrecan, collagen type II (Col II), and Sex-Determining Region Y Box 9 (Sox 9) were markedly increased in the STR group compared with that in the CON group. Additionally, the mRNA expression of bone morphogenetic protein-2 (BMP-2) and biglycan was significantly up-regulated in the STR group in contrast to that in CON group. CONCLUSIONS These results suggest that a 12-week strenuous treadmill running regimen can induce chondrocyte phenotype in rat Achilles tendons through chondrogenic differentiation of tendon stem cells (TSCs) by BMP-2 signaling.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Corresponding Author: Guo-Xin Ni, e-mail:
| |
Collapse
|
40
|
Xu L, Li Z, Lei L, Zhou YZ, Deng SY, He YB, Ni GX. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization. Microsc Res Tech 2016; 79:209-18. [PMID: 26910643 DOI: 10.1002/jemt.22620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/21/2015] [Accepted: 12/20/2015] [Indexed: 02/05/2023]
Abstract
This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Zhe Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
- Department of Orthopedics, Zhengzhou Orthopedics Hospital, 58 Longhai Road, Zhengzhou, 450052, China
| | - Lei Lei
- Department of Rehabilitation Medicine, Longyan First Hospital, 105 Jiuyi Road (N), Longyan, 364000, China
| | - Yue-Zhu Zhou
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Song-Yun Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Yong-Bin He
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou, 510515, China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| |
Collapse
|
41
|
Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 2015; 28:128-137. [PMID: 26407650 DOI: 10.1016/j.actbio.2015.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full-thickness osteochondral regeneration in rabbit knee joint models. STATEMENT OF SIGNIFICANCE Promoting effective hyaline cartilage regeneration rather than fibrocartilage scar tissue remains clinically challenging. To address the obstacle, we fabricated a spongy cell-free PLGA scaffold, and designed a reasonable exercise program to generate combined therapeutic effects. First, the implanting scaffold generates an affordable mechanical structure to bear the loading forces and bridge with the host to offer a space in the full-thickness osteochondral regeneration in rabbit knee joint. After implantation, rabbits were performed by an early treadmill exercise 15 min/day, 5 days/week for 2 weeks that directly exerts in situ endogenous growth factor and anti-inflammatory effects in the reparative site. The advanced therapeutic strategy showed that neo-hyaline cartilage formation with enriched collagen type II, higher glycosaminoglycan, integrating subchondral bone formation and modest inflammation.
Collapse
|
42
|
Iijima H, Aoyama T, Ito A, Yamaguchi S, Nagai M, Tajino J, Zhang X, Kuroki H. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis Cartilage 2015; 23:1563-74. [PMID: 25916553 DOI: 10.1016/j.joca.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Subchondral bone cyst (SBC) growth, caused by osteoclast activity during early knee osteoarthritis (OA) pathogenesis, should be treated to prevent further progressions of OA. In the present study, we evaluated the effects of gentle treadmill walking on subchondral bone and cartilage changes in an experimental rat model of destabilized medial meniscus (DMM). METHOD Twelve-week-old Wistar rats underwent DMM surgery in their right knee and sham surgery in their left knee and were assigned to either the sedentary group or walking group (n = 42/group). Animals in the walking group were subjected to treadmill exercise 2 days after surgery, which included walking for 12 m/min, 30 min/day, 5 days/week for 1, 2, and 4 week(s). Subchondral bone and cartilage changes were evaluated by micro-CT analysis, histological analysis, and biomechanical analysis. RESULTS Treadmill walking had a tendency to suppress SBC growth, which was confirmed by micro-CT (P = 0.06) and positive staining for tartrate-resistant acid phosphatase (TRAP) activity for the osteoclast number per bone surface (P = 0.09) 4 weeks after surgery. These changes coincide with the prevention of cartilage degeneration as evaluated by the Osteoarthritis Research Society International (OARSI) score (P < 0.05) and biomechanically softening (P < 0.05). Furthermore, treadmill walking could suppressed increasing osteocyte deaths (P < 0.01), which was positively correlated with the OARSI score (r = 0.77; P < 0.01). CONCLUSION These results indicate biomechanical and biological links exist between cartilage and subchondral bone; preventive effects of treadmill walking on subchondral bone deterioration might be partly explained by the chondroprotective effects.
Collapse
Affiliation(s)
- H Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - T Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - A Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - S Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - M Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - J Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - X Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - H Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| |
Collapse
|
43
|
Yu D, Zhou H, Yang Y, Jiang Y, Wang T, Lv L, Zhou Q, Yang Y, Dong X, He J, Huang X, Chen J, Wu K, Xu L, Mao R. The bidirectional effects of hypothyroidism and hyperthyroidism on anxiety- and depression-like behaviors in rats. Horm Behav 2015; 69:106-15. [PMID: 25623236 DOI: 10.1016/j.yhbeh.2015.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Thyroid hormone disorders have long been linked to depression, but the causal relationship between them remains controversial. To address this question, we established rat models of hypothyroidism using (131)iodine ((131)I) and hyperthyroidism using levothyroxine (LT4). Serum free thyroxine (FT4) and triiodothyronine (FT3) significantly decreased in the hypothyroid of rats with single injections of (131)I (5mCi/kg). These rats exhibited decreased depression-like behaviors in forced swimming test and sucrose preference tests, as well as decreased anxiety-like behaviors in an elevated plus maze. Diminished levels of brain serotonin (5-HT) and increased levels of hippocampal brain-derived neurotrophic factor (BDNF) were found in the hypothyroid rats compared to the control saline-vehicle administered rats. LT4 treatment reversed the decrease in thyroid hormones and depression-like behaviors. In contrast, hyperthyroidism induced by weekly injections of LT4 (15μg/kg) caused a greater than 10-fold increase in serum FT4 and FT3 levels. The hyperthyroid rats exhibited higher anxiety- and depression-like behaviors, higher brain 5-HT level, and lower hippocampal BDNF levels than the controls. Treatment with the antidepressant imipramine (15mg/kg) diminished serum FT4 levels as well as anxiety- and depression-like behaviors in the hyperthyroid rats but led to a further increase in brain 5-HT levels, compared with the controls or the hypothyroid rats. Together, our results suggest that hypothyroidism and hyperthyroidism have bidirectional effects on anxiety- and depression-like behaviors in rats, possibly by modulating hippocampal BDNF levels.
Collapse
Affiliation(s)
- Dafu Yu
- School of Life Sciences, Yunnan University, Kunming 650091, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China; Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Heng Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China
| | - Yuan Yang
- School of Life Sciences, Yunnan University, Kunming 650091, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China; Physiological Department, Kunming Medical University, Kunming 650500, China
| | - Yong Jiang
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Tianchao Wang
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Liang Lv
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Qixin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China
| | - Yuexiong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China
| | - Xuexian Dong
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Jianfeng He
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaoyan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in Southwest China, and Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Jijun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in Southwest China, and Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Kunhua Wu
- Department of Nuclear Medicine, First People's Hospital of Yunnan Province, and Key Laboratory of Medical Imaging, Medical Faculty, Kunming University of Science and Technology, Kunming 650032, China
| | - Lin Xu
- School of Life Sciences, Yunnan University, Kunming 650091, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China.
| | - Rongrong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China.
| |
Collapse
|