1
|
Xu L, Zhou S, Wang L, Yao Y, Hao L, Qi L, Yao Y, Han H, Mukkamala R, Greenwald SE. Improving the accuracy and robustness of carotid-femoral pulse wave velocity measurement using a simplified tube-load model. Sci Rep 2022; 12:5147. [PMID: 35338246 PMCID: PMC8956634 DOI: 10.1038/s41598-022-09256-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Arterial stiffness, as measured by pulse wave velocity, for the early non-invasive screening of cardiovascular disease is becoming ever more widely used and is an independent prognostic indicator for a variety of pathologies including arteriosclerosis. Carotid-femoral pulse wave velocity (cfPWV) is regarded as the gold standard for aortic stiffness. Existing algorithms for cfPWV estimation have been shown to have good repeatability and accuracy, however, further assessment is needed, especially when signal quality is compromised. We propose a method for calculating cfPWV based on a simplified tube-load model, which allows for the propagation and reflection of the pulse wave. In-vivo cfPWV measurements from 57 subjects and numerical cfPWV data based on a one-dimensional model were used to assess the method and its performance was compared to three other existing approaches (waveform matching, intersecting tangent, and cross-correlation). The cfPWV calculated using the simplified tube-load model had better repeatability than the other methods (Intra-group Correlation Coefficient, ICC = 0.985). The model was also more accurate than other methods (deviation, 0.13 ms−1) and was more robust when dealing with noisy signals. We conclude that the determination of cfPWV based on the proposed model can accurately and robustly evaluate arterial stiffness.
Collapse
Affiliation(s)
- Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China. .,Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang, China. .,Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China.
| | - Shuran Zhou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lu Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Yang Yao
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liling Hao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lin Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hongguang Han
- General Hospital of Northern Theater Command, Shenyang, China.
| | - Ramakrishna Mukkamala
- Department of Bioengineering, Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Stephen E Greenwald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Computing the ankle-brachial index with parallel computational fluid dynamics. J Biomech 2018; 82:28-37. [PMID: 30385003 DOI: 10.1016/j.jbiomech.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023]
Abstract
The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry. Thus, we present a massively parallel framework for computational fluid dynamics (CFD) simulations in the full arterial system. Using the lattice Boltzmann method to solve the Navier-Stokes equations, we employ highly parallelized and scalable methods to generate the simulation domain and efficiently distribute the computational load among processors. For the first time, we compute an ABI with 3-D CFD. In this proof-of-concept study, we investigate the dependence of ABI on the presence of stenoses, or narrowed regions of the arteries, by directly modifying the arterial geometry. As a result, our framework enables the computation a hemodynamic factor characterizing flow at the scale of the full arterial system, in a manner that is extensible to patient-specific imaging data and holds potential for treatment planning.
Collapse
|