1
|
Freitas-de-Sousa LA, Colombini M, Souza VC, Silva JPC, Mota-da-Silva A, Almeida MRN, Machado RA, Fonseca WL, Sartim MA, Sachett J, Serrano SMT, Junqueira-de-Azevedo ILM, Grazziotin FG, Monteiro WM, Bernarde PS, Moura-da-Silva AM. Venom Composition of Neglected Bothropoid Snakes from the Amazon Rainforest: Ecological and Toxinological Implications. Toxins (Basel) 2024; 16:83. [PMID: 38393161 PMCID: PMC10891915 DOI: 10.3390/toxins16020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.
Collapse
Affiliation(s)
| | - Mônica Colombini
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.A.F.-d.-S.); (M.C.)
| | - Vinicius C. Souza
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Joanderson P. C. Silva
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Ageane Mota-da-Silva
- Instituto Federal do Acre, Campus de Cruzeiro do Sul, Cruzeiro do Sul 69980-000, AC, Brazil;
| | - Marllus R. N. Almeida
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Reginaldo A. Machado
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Wirven L. Fonseca
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Marco A. Sartim
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Jacqueline Sachett
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Solange M. T. Serrano
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Inácio L. M. Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (V.C.S.); (J.P.C.S.); (S.M.T.S.); (I.L.M.J.-d.-A.)
| | - Felipe G. Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Wuelton M. Monteiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil; (M.A.S.); (J.S.); (W.M.M.)
| | - Paulo S. Bernarde
- Laboratório de Herpetologia, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69895-000, AC, Brazil; (M.R.N.A.); (R.A.M.); (W.L.F.); (P.S.B.)
| | - Ana M. Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.A.F.-d.-S.); (M.C.)
| |
Collapse
|
2
|
Colis-Torres A, Neri-Castro E, Strickland JL, Olvera-Rodríguez A, Borja M, Calvete J, Jones J, Parkinson CL, Bañuelos J, López de León J, Alagón A. Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie 2021; 192:111-124. [PMID: 34656669 DOI: 10.1016/j.biochi.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.
Collapse
Affiliation(s)
- Andrea Colis-Torres
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, AL, 36688, USA
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Borja
- Facultad Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Juan Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
| | - Jason Jones
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico
| | - Christopher L Parkinson
- Department of Biological Sciences and Department of Forestry, and Environmental Conservation, Clemson University, 190 Collings St. Clemson, SC, 29631, USA
| | - Jorge Bañuelos
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico; Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Edificio de Biología Campus II Ave. Preparatoria S/N, Col. Agronómica, 98066, ZacatecasZacatecas, Mexico
| | - Jorge López de León
- Hospital General Norberto Treviño Zapata, Ciudad Victoria, Tamaulipas, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Functional Mining of the Crotalus Spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules 2020; 25:molecules25153401. [PMID: 32731325 PMCID: PMC7435869 DOI: 10.3390/molecules25153401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.
Collapse
|
4
|
Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci Rep 2018; 8:17622. [PMID: 30514908 PMCID: PMC6279745 DOI: 10.1038/s41598-018-35810-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/20/2023] Open
Abstract
Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a ‘mixed’ Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.
Collapse
|
5
|
Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, Espinosa-Fematt J, Sáenz-Mata J, Flores-Martínez E, Alagón A, Castañeda-Gaytán G. Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes ( Crotalus molossus nigrescens). Toxins (Basel) 2018; 10:toxins10120501. [PMID: 30513722 PMCID: PMC6315878 DOI: 10.3390/toxins10120501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
- Programa de Doctorado en Ciencias Biomédicas UNAM, C.P. 04510 México D.F., Mexico.
| | - Rebeca Pérez-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Roberto Ponce-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
- Department of Forestry and Environmental Conservation, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Jorge Espinosa-Fematt
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango, Calz. Palmas 1, Revolución, 35050 Gómez Palacio, Dgo., Mexico.
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Esau Flores-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| |
Collapse
|
6
|
Zietek BM, Mayar M, Slagboom J, Bruyneel B, Vonk FJ, Somsen GW, Casewell NR, Kool J. Liquid chromatographic nanofractionation with parallel mass spectrometric detection for the screening of plasmin inhibitors and (metallo)proteinases in snake venoms. Anal Bioanal Chem 2018; 410:5751-5763. [PMID: 30090989 PMCID: PMC6096707 DOI: 10.1007/s00216-018-1253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023]
Abstract
To better understand envenoming and to facilitate the development of new therapies for snakebite victims, rapid, sensitive, and robust methods for assessing the toxicity of individual venom proteins are required. Metalloproteinases comprise a major protein family responsible for many aspects of venom-induced haemotoxicity including coagulopathy, one of the most devastating effects of snake envenomation, and is characterized by fibrinogen depletion. Snake venoms are also known to contain anti-fibrinolytic agents with therapeutic potential, which makes them a good source of new plasmin inhibitors. The protease plasmin degrades fibrin clots, and changes in its activity can lead to life-threatening levels of fibrinolysis. Here, we present a methodology for the screening of plasmin inhibitors in snake venoms and the simultaneous assessment of general venom protease activity. Venom is first chromatographically separated followed by column effluent collection onto a 384-well plate using nanofractionation. Via a post-column split, mass spectrometry (MS) analysis of the effluent is performed in parallel. The nanofractionated venoms are exposed to a plasmin bioassay, and the resulting bioassay activity chromatograms are correlated to the MS data. To study observed proteolytic activity of venoms in more detail, venom fractions were exposed to variants of the plasmin bioassay in which the assay mixture was enriched with zinc or calcium ions, or the chelating agents EDTA or 1,10-phenanthroline were added. The plasmin activity screening system was applied to snake venoms and successfully detected compounds exhibiting antiplasmin (anti-fibrinolytic) activities in the venom of Daboia russelii, and metal-dependent proteases in the venom of Crotalus basiliscus. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Barbara M Zietek
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Morwarid Mayar
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ben Bruyneel
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Toxins (Basel) 2018; 10:toxins10040135. [PMID: 29570631 PMCID: PMC5923301 DOI: 10.3390/toxins10040135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/04/2023] Open
Abstract
Phenotypic diversity generated through altered gene expression is a primary mechanism facilitating evolutionary response in natural systems. By linking the phenotype to genotype through transcriptomics, it is possible to determine what changes are occurring at the molecular level. High phenotypic diversity has been documented in rattlesnake venom, which is under strong selection due to its role in prey acquisition and defense. Rattlesnake venom can be characterized by the presence (Type A) or absence (Type B) of a type of neurotoxic phospholipase A2 (PLA2), such as Mojave toxin, that increases venom toxicity. Mojave rattlesnakes (Crotalus scutulatus), represent this diversity as both venom types are found within this species and within a single panmictic population in the Sonoran Desert. We used comparative venom gland transcriptomics of nine specimens of C. scutulatus from this region to test whether expression differences explain diversity within and between venom types. Type A individuals expressed significantly fewer toxins than Type B individuals owing to the diversity of C-type lectins (CTLs) and snake venom metalloproteinases (SVMPs) found in Type B animals. As expected, both subunits of Mojave toxin were exclusively found in Type A individuals but we found high diversity in four additional PLA2s that was not associated with a venom type. Myotoxin a expression and toxin number variation was not associated with venom type, and myotoxin a had the highest range of expression of any toxin class. Our study represents the most comprehensive transcriptomic profile of the venom type dichotomy in rattlesnakes and C. scutulatus. Even intra-specifically, Mojave rattlesnakes showcase the diversity of snake venoms and illustrate that variation within venom types blurs the distinction of the venom dichotomy.
Collapse
Affiliation(s)
- Jason L Strickland
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.
| | - Christopher L Parkinson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
8
|
Dowell NL, Giorgianni MW, Griffin S, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Curr Biol 2018; 28:1016-1026.e4. [PMID: 29576471 DOI: 10.1016/j.cub.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Sam Griffin
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University, Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico. Toxins (Basel) 2018; 10:toxins10010035. [PMID: 29316683 PMCID: PMC5793122 DOI: 10.3390/toxins10010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.
Collapse
|
10
|
Smiley-Walters SA, Farrell TM, Gibbs HL. Evaluating local adaptation of a complex phenotype: reciprocal tests of pigmy rattlesnake venoms on treefrog prey. Oecologia 2017; 184:739-748. [DOI: 10.1007/s00442-017-3882-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/08/2017] [Indexed: 11/24/2022]
|
11
|
Tincu RC, Ghiorghiu Z, Tomescu D, Macovei RA. The Compartment Syndrome Associated with Deep Vein Thrombosis due to Rattlesnake Bite: A Case Report. Balkan Med J 2017; 34:367-370. [PMID: 28443568 PMCID: PMC5617890 DOI: 10.4274/balkanmedj.2016.0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Snakebite is a health issue specific to some parts of the world, especially in the tropical areas, where it produces many victims. The main clinical damage caused by snakebite involves haemotoxic, neurotoxic and myotoxic reactions. We report the case of a young woman suffering from snakebite who developed deep vein thrombosis and compartment syndrome. Case Report: We present the case of a 32-year-old Romanian woman who was injured by her own Crotalinae snake (also known as pit viper or rattlesnake) on her left forearm. When admitted to our Emergency Department, she was conscious with a Glasgow coma scale of 12/15, somnolent, febrile, suffering of headache, tachypnoea; the marks of the snakebite were located in the distal part of the anterior left forearm; she had pain and bleeding at the bite site and swelling of the left upper limb with lymphangitis up to the axilla. She experienced fasciotomy-requiring compartment syndrome of the upper limb and required unfractionated heparin and close monitoring using activated partial thromboplastin time evolution due to micro-thrombosis in the brachial vein. Local improvement was achieved in the next 4 days with progressive diminishment of local tenderness and swelling. Conclusion: Limb deep vein thrombosis might be induced by snakebite, despite the pro-haemorrhagic general condition induced by the envenomation. A high index of clinical suspicion is needed for early diagnosis and timely management, which can improve survival of these patients.
Collapse
Affiliation(s)
- Radu Ciprian Tincu
- Toxicology-Intensive Care Unit, Bucharest Clinical Emergency Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Zoie Ghiorghiu
- Toxicology-Intensive Care Unit, Bucharest Clinical Emergency Hospital, Bucharest, Romania
| | - Dana Tomescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Anesthesiology Intensive Care Unit, Fundeni Clinical Institute, Bucharest, Romania
| | - Radu Alexandru Macovei
- Toxicology-Intensive Care Unit, Bucharest Clinical Emergency Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
12
|
Bernardoni JL, Sousa LF, Wermelinger LS, Lopes AS, Prezoto BC, Serrano SMT, Zingali RB, Moura-da-Silva AM. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS One 2014; 9:e109651. [PMID: 25313513 PMCID: PMC4196926 DOI: 10.1371/journal.pone.0109651] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.
Collapse
Affiliation(s)
| | - Leijiane F. Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Luciana S. Wermelinger
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
- Laboratório de Fisiopatologia da Trombose, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | - Aline S. Lopes
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | | | - Solange M. T. Serrano
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | - Russolina B. Zingali
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | | |
Collapse
|
13
|
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior I, Termignoni C. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:559-578. [PMID: 24687173 DOI: 10.1007/s10493-014-9796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, C.P. 15005, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Molecular models of the Mojave rattlesnake (Crotalus scutulatus scutulatus) venom metalloproteinases reveal a structural basis for differences in hemorrhagic activities. J Biol Phys 2014; 40:193-216. [PMID: 24522289 DOI: 10.1007/s10867-013-9339-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Rattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C. s. scutulatus metalloproteinase gene (GP1, GP2, GP3, and GP4). For comparative purposes, we modeled the atrolysin metalloproteinases of C. atrox as well. All molecular models shared the same topology. While the atrolysin metalloproteinase molecular models contained highly conserved substrate binding sites, the Mojave rattlesnake metalloproteinases showed higher structural divergence when superimposed onto each other. The highest structural divergence among the four C. s. scutulatus molecular models was located at the northern cleft wall and the S'1-pocket of the substrate binding site, molecular regions that modulate substrate selectivity. Molecular dynamics and field potential maps for each C. s. scutulatus metalloproteinase model demonstrated that the non-hemorrhagic metalloproteinases (GP2 and GP3) contain highly basic molecular and field potential surfaces while the hemorrhagic metalloproteinases GP1 and atrolysin C showed extensive acidic field potential maps and shallow but less dynamic active site pockets. Hence, differences in the spatial arrangement of the northern cleft wall, the S'1-pocket, and the physico-chemical environment surrounding the catalytic site contribute to differences in metalloproteinase activities in the Mojave rattlesnake. Our results provide a structural basis for variation of metalloproteinase-associated activities in the rattlesnake venom of the Mojave rattlesnake.
Collapse
|
15
|
Gasanov SE, Dagda RK, Rael ED. Snake Venom Cytotoxins, Phospholipase A 2s, and Zn 2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. JOURNAL OF CLINICAL TOXICOLOGY 2014; 4:1000181. [PMID: 24949227 PMCID: PMC4060629 DOI: 10.4172/2161-0495.1000181] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some snake venom toxins, however, have great potential as drugs for treating human diseases. In this review, we discuss the biochemistry, structure/function, and pathology induced by snake venom toxins on human tissue. We provide a broad overview of cobra venom cytotoxins, catalytically active and inactive phospholipase A2s (PLA2s), and Zn2+-dependent metalloproteinases. We also propose biomedical applications whereby snake venom toxins can be employed for treating human diseases. Cobra venom cytotoxins, for example, may be utilized as anti-cancer agents since they are efficient at destroying certain types of cancer cells including leukemia. Additionally, increasing our understanding of the molecular mechanism(s) by which snake venom PLA2s promote hydrolysis of cell membrane phospholipids can give insight into the underlying biomedical implications for treating autoimmune disorders that are caused by dysregulated endogenous PLA2 activity. Lastly, we provide an exhaustive overview of snake venom Zn2+-dependent metalloproteinases and suggest ways by which these enzymes can be engineered for treating deep vein thrombosis and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sardar E Gasanov
- Applied Mathematics and Informatics Department, Moscow State University Branch, 22 A. Timur Avenue, Tashkent 100060, Uzbekistan
- Science Department, Tashkent Ulugbek International School, 5-A J. Shoshiy Street, Tashkent 100100, Uzbekistan
| | - Ruben K Dagda
- Pharmacology Department, University of Nevada School of Medicine, 1664 North Virginia St., Reno, NV 89557, USA
| | - Eppie D Rael
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| |
Collapse
|