1
|
Patiño P, Gallego C, Martínez N, Iregui C, Rey A. Effect of carbohydrates on the adhesion of Bordetella bronchiseptica to the respiratory epithelium in rabbits. Vet Res Commun 2024; 48:1481-1495. [PMID: 38336962 PMCID: PMC11147920 DOI: 10.1007/s11259-024-10307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
This study proposes an ecological approach for preventing respiratory tract infections caused by Bordetella bronchiseptica in mammals using a mixture of carbohydrates. In an in vivo study, 51-day-old New Zealand rabbits were treated with a solution containing 1 × 107 CFUs of B. bronchiseptica and 250 μg of one of the following carbohydrates: N acetylglucosamine (GlcNAc), N acetylgalactosamine (GalNAc), alpha methyl mannose (AmeMan), alpha methyl glucose (AmeGlc) and sialic acid (Neu5AC). Positive (B. bronchiseptica) and negative (Physiological Saline Solution (PSS)) controls were included. Animals treated with GlcNAc or AmeGlc showed no clinical signs of infection and exhibited a significant reduction (p < 0.05) in the severity of microscopic lesions evaluated in the nasal cavity and lung compared with the positive controls. Additionally, the presence of bacteria was not detected through microbiological isolation or PCR in the lungs of animals treated with these sugars. Use of a mixture of GlcNAc and AmeGlc resulted in greater inhibition of microscopic lesions, with a significant reduction (p < 0.05) in the severity of these lesions compared to the results obtained using individual sugars. Furthermore, the bacterium was not detected through microbiological isolation, Polymerase Chain Reaction (PCR) or indirect immunoperoxidase (IIP) in this group.
Collapse
Affiliation(s)
- Pilar Patiño
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carolina Gallego
- Laboratory of Veterinary Pathology, Universidad de Ciencias Aplicadas y Ambientales, Bogotá D.C., Colombia
| | - Nhora Martínez
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Carlos Iregui
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia
| | - Alba Rey
- Pathobiology Group, Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia (UN), Bogotá D.C., Colombia.
- Faculty of Agricultural Sciences, Veterinary Medicine Program, Fundación Universitaria Agraria de Colombia, Bogotá D.C., Colombia.
| |
Collapse
|
2
|
Luczo JM, Hamidou Soumana I, Reagin KL, Dihle P, Ghedin E, Klonowski KD, Harvill ET, Tompkins SM. Bordetella bronchiseptica-Mediated Interference Prevents Influenza A Virus Replication in the Murine Nasal Cavity. Microbiol Spectr 2023; 11:e0473522. [PMID: 36728413 PMCID: PMC10100957 DOI: 10.1128/spectrum.04735-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Colonization resistance, also known as pathogen interference, describes the ability of a colonizing microbe to interfere with the ability of an incoming microbe to establish infection, and in the case of pathogenic organisms, cause disease in a susceptible host. Furthermore, colonization-associated dysbiosis of the commensal microbiota can alter host immunocompetence and infection outcomes. Here, we investigated the role of Bordetella bronchiseptica nasal colonization and associated disruption of the nasal microbiota on the ability of influenza A virus to establish infection in the murine upper respiratory tract. Targeted sequencing of the microbial 16S rRNA gene revealed that B. bronchiseptica colonization of the nasal cavity efficiently displaced the resident commensal microbiota-the peak of this effect occurring 7 days postcolonization-and was associated with reduced influenza associated-morbidity and enhanced recovery from influenza-associated clinical disease. Anti-influenza A virus hemagglutinin-specific humoral immune responses were not affected by B. bronchiseptica colonization, although the cellular influenza PA-specific CD8+ immune responses were dampened. Notably, influenza A virus replication in the nasal cavity was negated in B. bronchiseptica-colonized mice. Collectively, this work demonstrates that B. bronchiseptica-mediated pathogen interference prevents influenza A virus replication in the murine nasal cavity. This may have direct implications for controlling influenza A virus replication in, and transmission events originating from, the upper respiratory tract. IMPORTANCE The interplay of microbial species in the upper respiratory tract is important for the ability of an incoming pathogen to establish and, in the case of pathogenic organisms, cause disease in a host. Here, we demonstrate that B. bronchiseptica efficiently colonizes and concurrently displaces the commensal nasal cavity microbiota, negating the ability of influenza A virus to establish infection. Furthermore, B. bronchiseptica colonization also reduced influenza-associated morbidity and enhanced recovery from influenza-associated disease. Collectively, this study indicates that B. bronchiseptica-mediated interference prevents influenza A virus replication in the upper respiratory tract. This result demonstrates the potential for respiratory pathogen-mediated interference to control replication and transmission dynamics of a clinically important respiratory pathogen like influenza A virus.
Collapse
Affiliation(s)
- Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | | | - Katie L. Reagin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Preston Dihle
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Eric T. Harvill
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, Georgia, USA
| |
Collapse
|
3
|
Patiño P, Gallego C, Martínez N, Rey A, Iregui C. Intranasal instillation of Pasteurella multocida lipopolysaccharide in rabbits causes interstitial lung damage. Res Vet Sci 2022; 152:115-126. [DOI: 10.1016/j.rvsc.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/22/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
|
4
|
Collins A, Bear RA, Mallikarjun A, Kane SA, Essler JL, Kaynaroglu P, Feuer R, Smith JG, Otto CM. Effects of Intranasal and Oral Bordetella bronchiseptica Vaccination on the Behavioral and Olfactory Capabilities of Detection Dogs. Front Vet Sci 2022; 9:882424. [PMID: 35664843 PMCID: PMC9159271 DOI: 10.3389/fvets.2022.882424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
The bacterium Bordetella bronchiseptica is responsible for serious respiratory disease in dogs, most often associated with ‘kennel cough’ (canine infectious tracheobronchitis). It is recommended that dogs are vaccinated against the bacterium every 6–12 months, either by oral or intranasal administration. Any impairment of dogs' olfactory capabilities due to medical treatments may impact their efficiency and accuracy in their jobs. This study examined (1) the effect of intranasal and oral vaccines on the olfactory capabilities of detection dogs; as well as (1) effects of the vaccines on canine behavior. Dogs that were vaccinated initially with the oral and 28 days later with intranasal B. bronchiseptica were generally slower to find the target odor than the dogs that were assigned intranasal then oral vaccine. This result prompted a second between-subjects study to further investigate any impact of intranasal administration of the B. bronchiseptica vaccine on the olfactory capabilities of dogs. The intranasal vaccine was of particular interest due to its prevalent use and potential for nasal inflammation leading to decreased olfactory capabilities. Neither odor threshold nor time spent searching for odor were affected by the intranasal vaccine. Behavioral analyses showed that behaviors associated with the dogs' positive and negative motivation affected their time spent finding the target odor; this suggests that behavior should be considered in future studies of olfactory performance.
Collapse
Affiliation(s)
- Amanda Collins
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel A. Bear
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amritha Mallikarjun
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah A. Kane
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer L. Essler
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Patricia Kaynaroglu
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Feuer
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jordan G. Smith
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia M. Otto
- Penn Vet Working Dog Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Clinical Science and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Cynthia M. Otto
| |
Collapse
|
5
|
Assessment of Pasteurella multocida A Lipopolysaccharide, as an Adhesin in an In Vitro Model of Rabbit Respiratory Epithelium. Vet Med Int 2017; 2017:8967618. [PMID: 28251016 PMCID: PMC5303596 DOI: 10.1155/2017/8967618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
The role of the P. multocida lipopolysaccharide (LPS) as a putative adhesin during the early stages of infection with this bacterium in the respiratory epithelium of rabbits was investigated. By light microscopy and double enzyme labeling of nasal septa tissues, the amount of bacteria attached to the respiratory epithelium and the amount of LPS present in goblet cells at different experimental times were estimated. Transmission electron microscopy (TEM) and LPS labeling with colloidal gold particles were also used to determine the exact location of LPS in the cells. Septa that were challenged with LPS of P. multocida and 30 minutes later with P. multocida showed more adherent bacteria and more severe lesions than the other treatments. Free LPS was observed in the lumen of the nasal septum, forming bilamellar structures and adhering to the cilia, microvilli, cytoplasmic membrane, and cytoplasm of epithelial ciliated and goblet cells. The above findings suggest that P. multocida LPS plays an important role in the process of bacterial adhesion and that it has the ability of being internalized into host cells.
Collapse
|
6
|
Inhibition of Pasteurella multocida Adhesion to Rabbit Respiratory Epithelium Using Lectins. Vet Med Int 2015; 2015:365428. [PMID: 25810949 PMCID: PMC4354970 DOI: 10.1155/2015/365428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
This study aimed to evaluate the ability of a panel of lectins to inhibit the ability of Pasteurella multocida to adhere to and affect the rabbit respiratory epithelium. Nasal septa from rabbit fetuses were cultured with various lectins before the addition of P. multocida. The percentage of bacteria adhering to the epithelium was evaluated semiquantitatively by indirect immunoperoxidase (IIP) staining. The goblet cells (GCs) were counted in semithin sections stained with toluidine blue and served as the main morphological criterion to evaluate the inhibitory effect of the lectins. The lectins PNA, WGA, RCA120, and DBA significantly inhibited the adhesion of P. multocida to the ciliated epithelium (P < 0.05) and prevented the pathogen-induced increase in the number of GCs (P < 0.05) compared with those of positive control tissues. In addition, VVA, SJA, UEA I, DSL, SBA, and ECL significantly inhibited the increase in GCs compared with that of the control tissues. The results suggest that less aggressive therapeutic strategies, such as treatment with lectins, may represent alternative approaches to control bacterial respiratory infections.
Collapse
|