1
|
Enhanced laccase separation from fermentation medium using cryogel columns. J Biotechnol 2023; 364:58-65. [PMID: 36708996 DOI: 10.1016/j.jbiotec.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The laccase enzyme family belongs to the oxidoreductase enzyme class and is one of the most commercially valuable enzymes that catalyzes the oxidation of one electron of a wide range of phenolic compounds. Separation and purification of laccases are crucial for industry since they play an important role in dye decolorization, biodegradation and food processing. Therefore, developing effective, high yielding and cost-effective methods for laccase production is vital. In this study, it was aimed to prepare cryogel columns for laccase purification following the bioproduction of laccase via Aspergillus niger. 2-hydroxyethyl methacrylate based cryogels were synthesized in the presence of 1-vinylimidazole as the affinity ligand and characterized by swelling tests, Brunauer-Emmett-Teller surface area measurement and scanning electron microscopy analysis. Surface area and water uptake ratio of cryogel columns were 35 m2/g and 93 %, respectively. The effect of pH, equilibrium laccase concentration, flow rate, interaction time and temperature on laccase adsorption were examined. The purification factor was calculated as 10.53 under optimum conditions and the enzyme recovery was found to be 86.7 % from fermentation medium. Current study revealed that laccase purification using cryogels following filtration of fermentation medium could be a promising candidate for industrial applications with eliminating the need for complex chromatographic steps.
Collapse
|
2
|
Al-Sareji OJ, Meiczinger M, Salman JM, Al-Juboori RA, Hashim KS, Somogyi V, Jakab M. Ketoprofen and aspirin removal by laccase immobilized on date stones. CHEMOSPHERE 2023; 311:137133. [PMID: 36343736 DOI: 10.1016/j.chemosphere.2022.137133] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, enzymatic remediation/biocatalysis has gained prominence for the bioremediation of recalcitrant chemicals. Laccase is one of the commonly investigated enzymes for bioremediation applications. There is a growing interest in immobilizing this enzyme onto adsorbents for achieving high pollutant removal through simultaneous adsorption and biodegradation. Due to the influence of the biomolecule-support interface on laccase activity and stability, it is crucial to functionalize the solid carrier prior to immobilization. Date stone (PDS), as an eco-friendly, low-cost, and effective natural adsorbent, was utilized as a carrier for laccase (fungus Trametes versicolor). After activating PDS through chemical treatments, the surface area increased by thirty-six-fold, and carbonyl groups became more prominent. Batch experiments were carried out for ketoprofen and aspirin biodegradation in aqueous solutions. After six cycles, the laccase maintained 54% of its original activity confirmed by oxidation tests of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). In addition, the storage, pH, and thermal stability of immobilized laccase on functionalized date stone (LFPDS) were found to be superior to that of free laccase, demonstrating its potential for ongoing applications. In the aqueous batch mode, this immobilized laccase system was used to degrade 25 mg L-1 of ketoprofen and aspirin, resulting in almost complete removal within 4 h of treatment. This study reveals that agricultural wastes such as date stone can successfully be valorized through simple activation techniques, and the final product can be used as an adsorbent and substrate for immobilization enzyme. The high efficiency of the LFPDS in removing ketoprofen and aspirin highlights the potential of this technology for removing pharmaceuticals and merits its continued development.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary.
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Jasim M Salman
- Department of Biology, College of Science, University of Babylon, Al-Hillah, Iraq
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Iraq
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Miklós Jakab
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| |
Collapse
|
3
|
Pandey D, Daverey A, Dutta K, Arunachalam K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. CHEMOSPHERE 2022; 297:134126. [PMID: 35247449 DOI: 10.1016/j.chemosphere.2022.134126] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, decolorization and degradation of malachite green dye was studied using the laccase immobilized pine needle biochar. Successful immobilization of biochar was achieved by adsorption and confirmed through scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX), Fourier transform infrared spectroscopy (FTIR). High laccase binding of 64.4 U/g and high immobilization yield of 78.1% was achieved using 4U of enzyme at pH3 and temperature 30 °C. The immobilized laccase retained >50% relative activity in the pH range 2-7, >45% relative activity at 65 °C and >55% relative activity at 4 °C for 4 weeks. The re-usability of immobilized enzyme was checked with 2, 2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) substrate and enzyme retained 53% of its activity after 6 cycles. Immobilized laccase was used for the degradation and decolorization of azo dye malachite green in aqueous solution. More than 85% removal of malachite green dye (50 mg/L) was observed within 5 h. FTIR and high performance liquid chromatography (HPLC) analysis clearly indicated the breakdown of dye and presence of metabolites (leuco malachite green, methanone, [4-(dimethyl amino)pheny]phenyl and 3-dimethyl-phenyl amine) in gas chromatography-mass spectrometry (GC-MS) analysis confirmed the dye degradation. Phytotoxicity analysis indicated that the enzymatic degradation resulted in lesser toxic metabolites than the original dye. Thus, laccase immobilized biochar can be used as an efficient biocatalytic agent to remove dye from water.
Collapse
Affiliation(s)
- Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India; School of Biological Sciences, Doon University, Dehradun, Uttarakhand, 248012, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|
4
|
Aslam S, Ali A, Asgher M, Farah N, Iqbal HMN, Bilal M. Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catal Letters 2022; 152:1729-1741. [DOI: 10.1007/s10562-021-03765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023]
|
5
|
Noreen S, Asgher M, Qamar SA, Bilal M, Iqbal HMN. Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation. Catal Letters 2022; 152:1869-1879. [DOI: 10.1007/s10562-021-03778-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
|
6
|
Yavaşer R, Karagözler AA. Laccase immobilized polyacrylamide-alginate cryogel: A candidate for treatment of effluents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Öndeş B, Akpınar F, Uygun M, Muti M, Aktaş Uygun D. High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Güven G, Evli S, Uygun M, Aktaş Uygun D. Cholesterol removal by Β-cyclodextrin modified cryogel column. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1632894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gülşen Güven
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Sinem Evli
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Murat Uygun
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
9
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Adv Colloid Interface Sci 2018; 258:1-20. [PMID: 30075852 DOI: 10.1016/j.cis.2018.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/07/2022]
Abstract
Bioremediation, a biologically mediated transformation or degradation of persistent chemicals into nonhazardous or less-hazardous substances, has been recognized as a key strategy to control levels of pollutants in water and soils. The use of enzymes, notably oxidoreductases such as laccases, tyrosinases, various oxygenases, aromatic dioxygenases, and different peroxidases (all of EC class 1) is receiving significant research attention in this regard. It should be stated that immobilization is emphasized as a powerful tool for enhancement of enzyme activity and stability as well as for protection of the enzyme proteins against negative effects of harsh reaction conditions. As proper selection of support materials for immobilization and their performance is overlooked when it comes to comparing performance of immobilized enzyme in academic studies, this review summarizes the current state of knowledge regarding the materials used for enzyme immobilization of these oxidoreductase enzymes for environmental applications. In the presented study, thorough physicochemical characteristics of the support materials was presented. Moreover, various types of reactions and notably operational modes of enzymatic processes for biodegradation of harmful pollutants are summarized, and future trends in use of immobilized oxidoreductases for environmental applications are discussed. Our goal is to provide an improved foundation on which new technological advancements can be made to achieve efficient enzyme-assisted bioremediation.
Collapse
|
10
|
Vera M, Rivas BL. Immobilization of Trametes versicolor
laccase on different PGMA-based polymeric microspheres using response surface methodology: Optimization of conditions. J Appl Polym Sci 2017. [DOI: 10.1002/app.45249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Myleidi Vera
- Department of Polymer, Faculty of Chemistry; University of Concepción; Casilla Concepción 160-C Chile
| | - Bernabé L. Rivas
- Department of Polymer, Faculty of Chemistry; University of Concepción; Casilla Concepción 160-C Chile
| |
Collapse
|
11
|
Asgher M, Noreen S, Bilal M. Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Functional expression, production, and biochemical characterization of a laccase using yeast surface display technology. Fungal Biol 2016; 120:1609-1622. [PMID: 27890094 DOI: 10.1016/j.funbio.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 01/12/2023]
Abstract
A Trametes versicolor laccase was functionally expressed on the membrane surface of Saccharomyces cerevisiae EBY100. Laccase expression was increased 6.57-fold by medium optimization and surpassed production by the native strain. Maximal laccase and biomass production reached 19 735 ± 1719 Ug-1 and 6.22 ± 0.53 gL-1 respectively, after 2 d of culture. Optimum oxidization of all substrates by laccase was observed at pH 3. Laccase showed high affinity towards substrates used with Km (mM) and Vmax (μmol min-1) values of 0.57 ± 0.0047 and 24.55 ± 0.64, 1.52 ± 0.52 and 9.25 ± 1.78, and 2.67 ± 0.12 and 11.26 ± 0.75, were reported for ABTS, 2, 6-DMP and GUA, respectively. EDTA and NaN3 displayed none competitive inhibition towards laccase activity. The optimum temperature for activity was 50 °C; however, the enzyme was stable over a wide range of temperatures (25-70 °C). The biologically immobilized laccase showed high reusability towards phenolic substrates and low reusability with non-phenolic substrates. High affinity for a diversity phenolic compounds and great ethanol tolerance substantiates this laccase/yeast biocatalyst potential for application in the production of bioethanol.
Collapse
|
13
|
Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 2016; 89:181-9. [DOI: 10.1016/j.ijbiomac.2016.04.075] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
|
14
|
Uygun M. Ni(II) chelated IDA functionalized poly(HEMA-GMA) cryogels for urease adsorption. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2015; 1286:213-20. [PMID: 25749957 DOI: 10.1007/978-1-4939-2447-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cryogelic support materials have been intensively used for the purification and separation of biomolecules. Cryogels are cheap materials, they can be easily used for different purposes and their chemical and physical stabilities are very high. Cryogels can also be easily functionalized with different type of ligands and are be applicable to different affinity systems. Within these affinity systems, immobilized metal affinity chromatography (IMAC) offers efficient and simple protein purification strategies. IMAC technology has been deeply applied to bioseparations studies. In the present chapter, the preparation of a cryogel support material and the functionalization with the chelating agent iminodiacetic acid (IDA) and the subsequent Ni(II) chelation are described. Characterization techniques and the cryogel preparation method are summarized and urease adsorption studies on the metal chelate cryogel are briefly explained.
Collapse
Affiliation(s)
- Murat Uygun
- Koçarlı Vocational and Training School, Adnan Menderes University, Aydın, Turkey,
| |
Collapse
|
15
|
Bilal M, Asgher M. Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem Cent J 2015; 9:47. [PMID: 26379768 PMCID: PMC4570624 DOI: 10.1186/s13065-015-0125-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/01/2015] [Indexed: 12/07/2022] Open
Abstract
Background Fungal manganese peroxidases (MnPs) have great potential as bio-remediating agents and can be used continuously in the immobilized form like many other enzymes. Results In the present study, purified manganese peroxidase (MnP) enzyme isolated from Ganoderma lucidum IBL-05 was immobilized onto polyvinyl alcohol-alginate beads and investigated its potential for the decolorization and detoxification of new class of reactive dyes and textile wastewater. The optimal conditions for MnP immobilization were 10 % (w/v) PVA, 1.5 % sodium alginate, 3 % boric acid and 2 % CaCl2 solution. The optimum pH, temperature and kinetic parameters (Km and Vmax) for free and immobilized MnP were found to be significantly altered after immobilization. The immobilized MnP showed high decolorization efficiency for Sandal reactive dyes (78.14–92.29 %) and textile wastewater (61–80 %). Reusability studies showed that after six consecutive dye decolorization cycles, the PVA coupled MnP retained more than 60 % of its initial activity (64.9 % after 6th cycle form 92.29 % in 1st cycle) for Sandal-fix Foron Blue E2BLN dye. The water quality assurance parameters (BOD, COD and TOC) and cytotoxicity (haemolytic and brine shrimp lethality tests) studies before and after treatment were employed and results revealed that both the dyes aqueous solution and textile wastewater were cytotoxic that reduced significantly after treatment. Conclusions The decolorization and cytotoxicity outcomes indicated that immobilized MnP in PVA–alginate beads can be efficiently exploited for industrial and environmental applications, especially for remediation of textile dyes containing wastewater effluents. Dye decolorizing potential of immobilized MnP ![]()
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
16
|
Doğan T, Bayram E, Uzun L, Şenel S, Denizli A. Trametes versicolorlaccase immobilized poly(glycidyl methacrylate) based cryogels for phenol degradation from aqueous media. J Appl Polym Sci 2015. [DOI: 10.1002/app.41981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Tuğba Doğan
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Engin Bayram
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Lokman Uzun
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Serap Şenel
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| | - Adil Denizli
- Department of Chemistry; Hacettepe University; 06381-Beytepe Ankara Turkey
| |
Collapse
|
17
|
Uygun M. Dye-attached cryogels for reversible alcohol dehydrogenase immobilization. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:42-8. [DOI: 10.1016/j.jchromb.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/08/2014] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
|