1
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
2
|
Kojima KK. Hagfish genome reveals parallel evolution of 7SL RNA-derived SINEs. Mob DNA 2020; 11:18. [PMID: 32489435 PMCID: PMC7245038 DOI: 10.1186/s13100-020-00210-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 11/26/2022] Open
Abstract
Background Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3′ part of SINEs usually originated from that of counterpart non-LTR retrotransposons. The 5′ part of SINEs mostly originated from small RNA genes. SINE1 is a group of SINEs whose 5′ part originated from 7SL RNA, and is represented by primate Alu and murine B1. Well-defined SINE1 has been found only from Euarchontoglires, a group of mammals, in contrast to the wide distribution of SINE2, which has a tRNA-derived sequence, from animals to plants to protists. Both Alu and B1 are mobilized by L1-type non-LTR retrotransposons, which are the only lineage of autonomous non-LTR retrotransposons active in these mammalian lineages. Results Here a new lineage of SINE1 is characterized from the seashore hagfish Eptatretus burgeri genome. This SINE1 family, designated SINE1-1_EBu, is young, and is transposed by RTE-type non-LTR retrotransposon, not L1-type. Comparison with other SINE families from hagfish indicated the birth of SINE1-1_EBu through chimera formation of a 7SL RNA-derived sequence and an older tRNA-derived SINE family. It reveals parallel evolution of SINE1 in two vertebrate lineages with different autonomous non-LTR retrotransposon partners. The comparison between two SINE1 lineages supports that the RNA secondary structure of the Alu domain of 7SL RNA is required for the efficient retrotransposition. Conclusions The hagfish SINE1 is the first evident SINE1 family found outside of Euarchontoglires. Independent evolution of SINE1 with similar RNA secondary structure originated in 7SL RNA indicates the functional importance of 7SL RNA-derived sequence in the proliferation of SINEs.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA 95014 USA
| |
Collapse
|
3
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
4
|
Nishiyama E, Ohshima K. Cross-Kingdom Commonality of a Novel Insertion Signature of RTE-Related Short Retroposons. Genome Biol Evol 2018; 10:1471-1483. [PMID: 29850801 PMCID: PMC6007223 DOI: 10.1093/gbe/evy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, such as vertebrates and flowering plants, horizontal transfer (HT) of genetic information is thought to be a rare event. However, recent findings unveiled unexpectedly frequent HT of RTE-clade LINEs. To elucidate the molecular footprints of the genomic integration machinery of RTE-related retroposons, the sequence patterns surrounding the insertion sites of plant Au-like SINE families were analyzed in the genomes of a wide variety of flowering plants. A novel and remarkable finding regarding target site duplications (TSDs) for SINEs was they start with thymine approximately one helical pitch (ten nucleotides) downstream of a thymine stretch. This TSD pattern was found in RTE-clade LINEs, which share the 3'-end sequence of these SINEs, in the genome of leguminous plants. These results demonstrably show that Au-like SINEs were mobilized by the enzymatic machinery of RTE-clade LINEs. Further, we discovered the same TSD pattern in animal SINEs from lizard and mammals, in which the RTE-clade LINEs sharing the 3'-end sequence with these animal SINEs showed a distinct TSD pattern. Moreover, a significant correlation was observed between the first nucleotide of TSDs and microsatellite-like sequences found at the 3'-ends of SINEs and LINEs. We propose that RTE-encoded protein could preferentially bind to a DNA region that contains a thymine stretch to cleave a phosphodiester bond downstream of the stretch. Further, determination of cleavage sites and/or efficiency of primer sites for reverse transcription may depend on microsatellite-like repeats in the RNA template. Such a unique mechanism may have enabled retroposons to successfully expand in frontier genomes after HT.
Collapse
Affiliation(s)
- Eri Nishiyama
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
5
|
Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol 2018; 53:17-30. [PMID: 30317035 DOI: 10.1016/j.semcancer.2018.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer incidence and mortality, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases. In this scenario, increasing scientific evidences demonstrate that the activation of human endogenous retroviruses (HERVs) is involved in the aggressiveness of tumors such as melanoma, breast, germ cell, renal, ovarian, liver and haematological cancers. In their dynamic regulation, HERVs have also proved to be important determinants of pluripotency in human embryonic stem cells (ESC) and of the reprogramming process of induced pluripotent stem cells (iPSCs). In many types of tumors, essential characteristics of aggressiveness have been associated with the achievement of stemness features, often accompanied with the identification of defined subpopulations, termed cancer stem cells (CSCs), which possess stem cell-like properties and sustain tumorigenesis. Indeed, CSCs show high self-renewal capacity with a peculiar potential in tumor initiation, progression, metastasis, heterogeneity, recurrence, radiotherapy and drug resistance. However, HERVs role in CSCs biology is still not fully elucidated. In this regard, CD133 is a widely recognized marker of CSCs, and our group demonstrated, for the first time, the requirement of HERV-K activation to expand and maintain a CD133+ melanoma cell subpopulation with stemness features in response to microenvironmental modifications. The review will discuss HERVs expression as cancer hallmark, with particular focus on their role in the regulation of cancer stemness features and the potential involvement as targets for therapy.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.
| | - Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| |
Collapse
|
6
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 PMCID: PMC5664825 DOI: 10.1186/s13059-017-1341-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Background Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. Results We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. Conclusions Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1341-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.,Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 DOI: 10.1007/s13580-019-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2019] [Accepted: 10/06/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 2017; 12:e0183921. [PMID: 28841720 PMCID: PMC5571935 DOI: 10.1371/journal.pone.0183921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus) and Qinchuan (Bos taurus) are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp) were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV) were identified by aligning Nanyang to Qinchuan genome, 783 of which (27%) encompassed the coding regions of 495 functional genes. The gene ontology (GO) analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR) overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio) = -2.34988; P value = 1.53E-102). Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs, indels and CNV.
Collapse
|
9
|
Grandi N, Tramontano E. Type W Human Endogenous Retrovirus (HERV-W) Integrations and Their Mobilization by L1 Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 2017; 9:v9070162. [PMID: 28653997 PMCID: PMC5537654 DOI: 10.3390/v9070162] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Human Endogenous Retroviruses (HERVs) are ancient infection relics constituting ~8% of our DNA. While HERVs’ genomic characterization is still ongoing, impressive amounts of data have been obtained regarding their general expression across tissues. Among HERVs, one of the most studied is the W group, which is the sole HERV group specifically mobilized by the long interspersed element-1 (LINE-1) machinery, providing a source of novel insertions by retrotransposition of HERV-W processed pseudogenes, and comprising a member encoding a functional envelope protein coopted for human placentation. The HERV-W group has been intensively investigated for its putative role in several diseases, such as cancer, inflammation, and autoimmunity. Despite major interest in the link between HERV-W expression and human pathogenesis, no conclusive correlation has been demonstrated so far. In general, (i) the absence of a proper identification of the specific HERV-W sequences expressed in a given condition; and (ii) the lack of studies attempting to connect the various observations in the same experimental conditions are the major problems preventing the definitive assessment of the HERV-W impact on human physiopathology. In this review, we summarize the current knowledge on the HERV-W group presence within the human genome and its expression in physiological tissues as well as in the main pathological contexts.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
10
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
11
|
Sahakyan AB, Murat P, Mayer C, Balasubramanian S. G-quadruplex structures within the 3' UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol 2017; 24:243-247. [PMID: 28134931 DOI: 10.1038/nsmb.3367] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/22/2016] [Indexed: 12/28/2022]
Abstract
Long interspersed nuclear elements (LINEs) are ubiquitous transposable elements in higher eukaryotes that have a significant role in shaping genomes, owing to their abundance. Here we report that guanine-rich sequences in the 3' untranslated regions (UTRs) of hominoid-specific LINE-1 elements are coupled with retrotransposon speciation and contribute to retrotransposition through the formation of G-quadruplex (G4) structures. We demonstrate that stabilization of the G4 motif of a human-specific LINE-1 element by small-molecule ligands stimulates retrotransposition.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clemens Mayer
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Zhu Z, Tan S, Zhang Y, Zhang YE. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots. Sci Rep 2016; 6:24755. [PMID: 27098918 PMCID: PMC4838847 DOI: 10.1038/srep24755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 11/16/2022] Open
Abstract
RNA-based duplicated genes or functional retrocopies (retrogenes) are known to drive phenotypic evolution. Retrogenes emerge via retroposition, which is mainly mediated by long interspersed nuclear element 1 (LINE-1 or L1) retrotransposons in mammals. By contrast, long terminal repeat (LTR) retrotransposons appear to be the major player in plants, although an L1-like mechanism has also been hypothesized to be involved in retroposition. We tested this hypothesis by searching for young retrocopies, as these still retain the sequence features associated with the underlying retroposition mechanism. Specifically, we identified polymorphic retrocopies (retroCNVs) by analyzing public Arabidopsis (Arabidopsis thaliana) resequencing data. Furthermore, we searched for recently originated retrocopies encoded by the reference genome of Arabidopsis and Manihot esculenta. Across these two datasets, we found cases with L1-like hallmarks, namely, the expected target site sequence, a polyA tail and target site duplications. Such data suggest that an L1-like mechanism could operate in plants, especially dicots.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shengjun Tan
- Key Laboratory of the Zoological Systematics and Evolution &State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqiong Zhang
- Key Laboratory of the Zoological Systematics and Evolution &State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- Key Laboratory of the Zoological Systematics and Evolution &State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yuan L, Geiser F, Lin B, Sun H, Chen J, Zhang S. Down but Not Out: The Role of MicroRNAs in Hibernating Bats. PLoS One 2015; 10:e0135064. [PMID: 26244645 PMCID: PMC4526555 DOI: 10.1371/journal.pone.0135064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/16/2015] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate many physiological processes through post-transcriptional control of gene expression and are a major part of the small noncoding RNAs (snRNA). As hibernators can survive at low body temperatures (Tb) for many months without suffering tissue damage, understanding the mechanisms that enable them to do so are of medical interest. Because the brain integrates peripheral physiology and white adipose tissue (WAT) is the primary energy source during hibernation, we hypothesized that both of these organs play a crucial role in hibernation, and thus, their activity would be relatively increased during hibernation. We carried out the first genomic analysis of small RNAs, specifically miRNAs, in the brain and WAT of a hibernating bat (Myotis ricketti) by comparing deeply torpid with euthermic individual bats using high-throughput sequencing (Solexa) and qPCR validation of expression levels. A total of 196 miRNAs (including 77 novel bat-specific miRNAs) were identified, and of these, 49 miRNAs showed significant differences in expression during hibernation, including 33 in the brain and 25 in WAT (P≤0.01 &│logFC│≥1). Stem-loop qPCR confirmed the miRNA expression patterns identified by Solexa sequencing. Moreover, 31 miRNAs showed tissue- or state-specific expression, and six miRNAs with counts >100 were specifically expressed in the brain. Putative target gene prediction combined with KEGG pathway and GO annotation showed that many essential processes of both organs are significantly correlated with differentially expressed miRNAs during bat hibernation. This is especially evident with down-regulated miRNAs, indicating that many physiological pathways are altered during hibernation. Thus, our novel findings of miRNAs and Interspersed Elements in a hibernating bat suggest that brain and WAT are active with respect to the miRNA expression activity during hibernation.
Collapse
Affiliation(s)
- Lihong Yuan
- Guangdong Entomological Institute, Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou, China
| | - Fritz Geiser
- Center for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Benfu Lin
- Animal Husbandry and Veterinary Bureau of Huadu District, Guangzhou, China
| | - Haibo Sun
- MininGene Biotechnology Co. Ltd, Beijing, China
| | - Jinping Chen
- Guangdong Entomological Institute, Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
|
15
|
Syed AS, Korsching SI. Positive Darwinian selection in the singularly large taste receptor gene family of an 'ancient' fish, Latimeria chalumnae. BMC Genomics 2014; 15:650. [PMID: 25091523 PMCID: PMC4132921 DOI: 10.1186/1471-2164-15-650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/29/2014] [Indexed: 11/11/2022] Open
Abstract
Background Chemical senses are one of the foremost means by which organisms make sense of their environment, among them the olfactory and gustatory sense of vertebrates and arthropods. Both senses use large repertoires of receptors to achieve perception of complex chemosensory stimuli. High evolutionary dynamics of some olfactory and gustatory receptor gene families result in considerable variance of chemosensory perception between species. Interestingly, both ora/v1r genes and the closely related t2r genes constitute small and rather conserved families in teleost fish, but show rapid evolution and large species differences in tetrapods. To understand this transition, chemosensory gene repertoires of earlier diverging members of the tetrapod lineage, i.e. lobe-finned fish such as Latimeria would be of high interest. Results We report here the complete T2R repertoire of Latimeria chalumnae, using thorough data mining and extensive phylogenetic analysis. Eighty t2r genes were identified, by far the largest family reported for any species so far. The genomic neighborhood of t2r genes is enriched in repeat elements, which may have facilitated the extensive gene duplication events resulting in such a large family. Examination of non-synonymous vs. synonymous substitution rates (dN/dS) suggests pronounced positive Darwinian selection in Latimeria T2Rs, conceivably ensuring efficient neo-functionalization of newly born t2r genes. Notably, both traits, positive selection and enrichment of repeat elements in the genomic neighborhood, are absent in the twenty v1r genes of Latimeria. Sequence divergence in Latimeria T2Rs and V1Rs is high, reminescent of the corresponding teleost families. Some conserved sequence motifs of Latimeria T2Rs and V1Rs are shared with the respective teleost but not tetrapod genes, consistent with a potential role of such motifs in detection of aquatic chemosensory stimuli. Conclusions The singularly large T2R repertoire of Latimeria may have been generated by facilitating local gene duplication via increased density of repeat elements, and efficient neofunctionalization via positive Darwinian selection. The high evolutionary dynamics of tetrapod t2r gene families precedes the emergence of tetrapods, i.e. the water-to-land transition, and thus constitutes a basal feature of the lobe-finned lineage of vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-650) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Abdelsamad A, Pecinka A. Pollen-specific activation of Arabidopsis retrogenes is associated with global transcriptional reprogramming. THE PLANT CELL 2014; 26:3299-313. [PMID: 25118244 PMCID: PMC4371830 DOI: 10.1105/tpc.114.126011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/19/2014] [Accepted: 07/25/2014] [Indexed: 05/21/2023]
Abstract
Duplications allow for gene functional diversification and accelerate genome evolution. Occasionally, the transposon amplification machinery reverse transcribes the mRNA of a gene, integrates it into the genome, and forms an RNA-duplicated copy: the retrogene. Although retrogenes have been found in plants, their biology and evolution are poorly understood. Here, we identified 251 (216 novel) retrogenes in Arabidopsis thaliana, corresponding to 1% of protein-coding genes. Arabidopsis retrogenes are derived from ubiquitously transcribed parents and reside in gene-rich chromosomal regions. Approximately 25% of retrogenes are cotranscribed with their parents and 3% with head-to-head oriented neighbors. This suggests transcription by novel promoters for 72% of Arabidopsis retrogenes. Many retrogenes reach their transcription maximum in pollen, the tissue analogous to animal spermatocytes, where upregulation of retrogenes has been found previously. This implies an evolutionarily conserved mechanism leading to this transcription pattern of RNA-duplicated genes. During transcriptional repression, retrogenes are depleted of permissive chromatin marks without an obvious enrichment for repressive modifications. However, this pattern is common to many other pollen-transcribed genes independent of their evolutionary origin. Hence, retroposition plays a role in plant genome evolution, and the developmental transcription pattern of retrogenes suggests an analogous regulation of RNA-duplicated genes in plants and animals.
Collapse
Affiliation(s)
- Ahmed Abdelsamad
- Max Planck Institute for Plant Breeding Research, Cologne DE-50829, Germany
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Cologne DE-50829, Germany
| |
Collapse
|