1
|
Islam SM, Hasan MM, Alam J, Dey A, Molineaux D. In Silico Screening, Molecular Dynamics Simulation and Binding Free Energy Identify Single-Point Mutations That Destabilize p53 and Reduce Binding to DNA. Proteins 2024. [PMID: 39264222 DOI: 10.1002/prot.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 μM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.
Collapse
Affiliation(s)
- Shahidul M Islam
- Department of Chemistry, Delaware State University, Dover, Delaware, USA
| | - Md Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, Delaware, USA
| | - Jahidul Alam
- Department of Molecular Biology and Biotechnology, Queen's University Belfast, Belfast, UK
| | - Anonya Dey
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Dylan Molineaux
- Department of Chemistry, Delaware State University, Dover, Delaware, USA
| |
Collapse
|
2
|
Moyer AM, Skierka JM, Kotzer KE, Kluge ML, Black JL, Baudhuin LM. Clinical UGT1A1 Genetic Analysis in Pediatric Patients: Experience of a Reference Laboratory. Mol Diagn Ther 2018; 21:327-335. [PMID: 28213806 DOI: 10.1007/s40291-017-0265-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neonatal hyperbilirubinemia can be severe or prolonged and warrant exploration into the underlying etiology, which may include genetic assessment of UGT1A1 for inherited disorders (i.e. Crigler-Najjar syndrome or Gilbert syndrome). METHODS In our reference laboratory, we performed UGT1A1 gene sequencing analysis on 346 pediatric patients referred for a clinical indication of hyperbilirubinemia. RESULTS Males (n = 241) had significantly higher mean total bilirubin concentration compared to females (n = 105) (9.7 and 7.3 mg/dL, respectively, p = 0.042); however, no sex-based difference was observed in frequency of known or suspected reduced function UGT1A1 variants. The presence of two UGT1A1 variants (consistent with Gilbert or Crigler-Najjar syndrome) occurred less frequently in neonates (aged ≤28 days) than older children (aged 1-18 years) (31.3% in neonates vs. 85.1%, p < 0.0001), and among neonates there was no significant difference in mean total bilirubin between those with two UGT1A1 variants and those without (p = 0.47). Three novel variants, including c.337T>G (p.Y113D), c.1037C>A (p.A346E), and c.1469A>C (p.D490A) were identified. Among older children, the most common reason for referral was Gilbert syndrome (83.8%) and UGT1A1 genetic analysis confirmed a diagnosis of Gilbert syndrome in 79.0% of those children. CONCLUSIONS Among neonates, a population in which hyperbilirubinemia is common and often of multifactorial etiology, UGT1A1 genetic testing served as a useful clinical tool in ruling in or ruling out inherited hyperbilirubinemia. Here we describe our experience as a reference laboratory in clinical UGT1A1 full gene sequencing. Our results highlight the challenges in predicting the contribution of genetic variation in UGT1A1 to hyperbilirubinemia based on clinical parameters alone, particularly in neonates, and the utility of UGT1A1 full gene sequencing in the evaluation of neonatal and pediatric hyperbilirubinemia.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jennifer M Skierka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katrina E Kotzer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michelle L Kluge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - John L Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Linnea M Baudhuin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Namjou B, Marsolo K, Lingren T, Ritchie MD, Verma SS, Cobb BL, Perry C, Kitchner TE, Brilliant MH, Peissig PL, Borthwick KM, Williams MS, Grafton J, Jarvik GP, Holm IA, Harley JB. A GWAS Study on Liver Function Test Using eMERGE Network Participants. PLoS One 2015; 10:e0138677. [PMID: 26413716 PMCID: PMC4586138 DOI: 10.1371/journal.pone.0138677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations. Methods The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC). Results Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10−8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15). Conclusions Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.
Collapse
Affiliation(s)
- Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| | - Keith Marsolo
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Todd Lingren
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Marylyn D. Ritchie
- Center for Systems Genomics, The Pennsylvania State University, University Park, PA, United States of America
| | - Shefali S. Verma
- Center for Systems Genomics, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth L. Cobb
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
| | - Cassandra Perry
- Division of Genetics and Genomics, Boston Children’s Hospital (BCH), Boston, MA, United States of America
| | - Terrie E. Kitchner
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Murray H. Brilliant
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Peggy L. Peissig
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States of America
| | - Kenneth M. Borthwick
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, United States of America
| | - Marc S. Williams
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, United States of America
| | - Jane Grafton
- Group Health Research Institute, Seattle, WA, United States of America
| | - Gail P. Jarvik
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Ingrid A. Holm
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, United States of America
- University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|