1
|
Roy S, Roy S, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Teichmann SA. CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells. Front Immunol 2023; 14:1229703. [PMID: 38022565 PMCID: PMC10644475 DOI: 10.3389/fimmu.2023.1229703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Bidesh Mahata
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco L. Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
- Cellzome, a GlaxoSmithKline (GSK) company, Genomic Sciences, Pharma R&D, Heidelberg, Germany
| | - Anne-Claude Gavin
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah A. Teichmann
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
2
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
3
|
Venugopala KN, Deb PK, Pillay M, Chopra D, Chandrashekharappa S, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Kandeel M, Venugopala R, Mohanlall V. 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study. Curr Top Med Chem 2021; 21:295-306. [PMID: 33138763 DOI: 10.2174/1568026620666201102121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | | | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
4
|
Vanajothi R, Vedagiri H, Al-Ansari MM, Al-Humaid LA, Kumpati P. Pharmacophore based virtual screening, molecular docking and molecular dynamic simulation studies for finding ROS1 kinase inhibitors as potential drug molecules. J Biomol Struct Dyn 2020; 40:3385-3399. [PMID: 33200682 DOI: 10.1080/07391102.2020.1847195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proto-oncogene receptor tyrosine kinase ROS-1 is one of the clinically important biomarker and plays a crucial role in regulation of a number of cellular functions including cell proliferation, migration and angiogenesis. Recently, inhibition of ROS1 kinase has proven to be a promising target of anticancer drugs for non-small cell lung cancer (NSCLC). The very few compounds have been used as potent drug molecules so far and the selective ROS1 inhibitors are relatively rare. Besides the currently available drugs such as Crizotinib and PF-06463922 are becoming sensitive due to mutations in the ROS1 protein. To curtail the problem of the resistant, present study was designed to identify the potent inhibitors against ROS1. Three different screening approaches such as structure based, Atom-based and pharmacophore based screening were carried out against commercially available databases and the retrieved best hits were further evaluated by Lipinski's filter. Thereafter the lead molecule was subjected to pocket specific docking with ROS1. The results show that, total of 9 molecules (3 from each screening) has good docking score (with range of -9.288 to -12.49 Kcal/Mol) and binding interactions within the active site of ROS1. In order to analyze the stability of the ligand- protein complexes, molecular dynamics simulation was performed. Thus, these identified potential lead molecules with good binding score and binding affinity with ROS1 may act as the potent ROS1 inhibitor, and that are worth considering for further experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tamil Nadu, India
| | | | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Premkumar Kumpati
- Department of Biomedical Science, Bharathidasan University, Tamil Nadu, India
| |
Collapse
|
5
|
Anti-Tubercular Properties of 4-Amino-5-(4-Fluoro-3- Phenoxyphenyl)-4 H-1,2,4-Triazole-3-Thiol and Its Schiff Bases: Computational Input and Molecular Dynamics. Antibiotics (Basel) 2020; 9:antibiotics9090559. [PMID: 32878018 PMCID: PMC7560126 DOI: 10.3390/antibiotics9090559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin microtiter assay (REMA) plate method. Test compound 1 exhibited promising anti-TB activity against H37Rv and MDR strains of MTB at 5.5 µg/mL and 11 µg/mL, respectively. An attempt to identify the suitable molecular target for compound 1 was performed using a set of triazole thiol cellular targets, including β-ketoacyl carrier protein synthase III (FABH), β-ketoacyl ACP synthase I (KasA), CYP121, dihydrofolate reductase, enoyl-acyl carrier protein reductase, and N-acetylglucosamine-1-phosphate uridyltransferase. MTB β-ketoacyl ACP synthase I (KasA) was identified as the cellular target for the promising anti-TB parent compound 1 via docking and molecular dynamics simulation. MM(GB/PB)SA binding free energy calculation revealed stronger binding of compound 1 compared with KasA standard inhibitor thiolactomycin (TLM). The inhibitory mechanism of test compound 1 involves the formation of hydrogen bonding with the catalytic histidine residues, and it also impedes access of fatty-acid substrates to the active site through interference with α5–α6 helix movement. Test compound 1-specific structural changes at the ALA274–ALA281 loop might be the contributing factor underlying the stronger anti-TB effect of compound 1 when compared with TLM, as it tends to adopt a closed conformation for the access of malonyl substrate to its binding site.
Collapse
|
6
|
Modification of drug-binding proteins associated with the efflux pump in MDR-MTB in course of evolution: an unraveled clue based on in silico approach. J Antibiot (Tokyo) 2019; 72:282-290. [DOI: 10.1038/s41429-019-0146-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/08/2022]
|
7
|
Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB—A molecular docking and dynamics approach. Comput Biol Chem 2016; 62:29-35. [DOI: 10.1016/j.compbiolchem.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/25/2022]
|