1
|
Atypical Teratoid Rhabdoid Tumours Are Susceptible to Panobinostat-Mediated Differentiation Therapy. Cancers (Basel) 2021; 13:cancers13205145. [PMID: 34680294 PMCID: PMC8534272 DOI: 10.3390/cancers13205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Atypical teratoid rhabdoid tumour (ATRT) is an aggressive undifferentiated malignancy of the central nervous system in children. A defining feature of ATRT is the loss of the SMARCB1 gene that is essential for regulating gene expression required for normal developmental processes. We show that treatment of human ATRT cell models with the histone deacetylate inhibitor, panobinostat, inhibits tumour growth, reactivates the expression of developmental genes, and drives neuronal differentiation. These results demonstrate the therapeutic potential of panobinostat for the treatment of ATRT. Abstract Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.
Collapse
|
2
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
3
|
Whittle SB, Offer K, Roberts RD, LeBlanc A, London C, Majzner RG, Huang AY, Houghton P, Cordero EAS, Grohar PJ, Isakoff M, Bishop MW, Stewart E, Slotkin EK, Greengard E, Borinstein SC, Navid F, Gorlick R, Janeway KA, Reed DR, Hingorani P. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children's Oncology Group New Agents for Osteosarcoma Task Force. Pediatr Blood Cancer 2021; 68:e29188. [PMID: 34137164 PMCID: PMC8316376 DOI: 10.1002/pbc.29188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.
Collapse
Affiliation(s)
- Sarah B. Whittle
- Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Katharine Offer
- Joseph M. Sanzari Children’s Hospital, Hackensack Meridian Health, Hackensack, NJ
| | - Ryan D. Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children’s Hospital, Columbus, OH
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cheryl London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Alex Y. Huang
- Case Western Reserve University School of Medicine and UH Rainbow Babies & Children’s Hospital, Cleveland, OH
| | - Peter Houghton
- Greehy Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | - E. Alejandro Sweet Cordero
- Benioff Children’s Hospitals, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Michael Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT
| | - Michael W. Bishop
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Scott C. Borinstein
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Fariba Navid
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Damon R. Reed
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL and Moffitt Cancer Center Department of Individualized Cancer Management, Tampa, FL
| | - Pooja Hingorani
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Torres HM, VanCleave AM, Vollmer M, Callahan DL, Smithback A, Conn JM, Rodezno-Antunes T, Gao Z, Cao Y, Afeworki Y, Tao J. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers (Basel) 2021; 13:4199. [PMID: 34439353 PMCID: PMC8394112 DOI: 10.3390/cancers13164199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley M. VanCleave
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Mykayla Vollmer
- Medical Student Research Program, University of South Dakota, Vermillion, SD 57069, USA;
| | - Dakota L. Callahan
- Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD 57104, USA;
| | - Austyn Smithback
- Sanford PROMISE Scholar Program, Harrisburg High School, Sioux Falls, SD 57104, USA;
| | - Josephine M. Conn
- Sanford Program for Undergraduate Research, Carleton College, Northfield, MN 55057, USA;
| | - Tania Rodezno-Antunes
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Zili Gao
- Flow Cytometry Core at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Yuxia Cao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
5
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Faheem MM, Seligson ND, Ahmad SM, Rasool RU, Gandhi SG, Bhagat M, Goswami A. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives. Cell Death Discov 2020; 6:51. [PMID: 32566256 PMCID: PMC7295779 DOI: 10.1038/s41420-020-0286-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Drug induced resistance is a widespread problem in the clinical management of cancer. Cancer cells, when exposed to cytotoxic drugs, can reprogram their cellular machinery and resist cell death. Evasion of cell death mechanisms, such as apoptosis and necroptosis, are part of a transcriptional reprogramming that cancer cells utilize to mediate cytotoxic threats. An additional strategy adopted by cancer cells to resist cell death is to initiate the epithelial to mesenchymal transition (EMT) program. EMT is a trans-differentiation process which facilitates a motile phenotype in cancer cells which can be induced when cells are challenged by specific classes of cytotoxic drugs. Induction of EMT in malignant cells also results in drug resistance. In this setting, therapy-induced senescence (TIS), an enduring "proliferative arrest", serves as an alternate approach against cancer because cancer cells remain susceptible to induced senescence. The molecular processes of senescence have proved challenging to understand. Senescence has previously been described solely as a tumor-suppressive mechanism; however, recent evidences suggest that senescence-associated secretory phenotype (SASP) can contribute to tumor progression. SASP has also been identified to contribute to EMT induction. Even though the causes of senescence and EMT induction can be wholly different from each other, a functional link between EMT and senescence is still obscure. In this review, we summarize the evidence of potential cross-talk between EMT and senescence while highlighting some of the most commonly identified molecular players. This review will shed light on these two intertwined and highly conserved cellular process, while providing background of the therapeutic implications of these processes.
Collapse
Affiliation(s)
- Mir Mohd Faheem
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001 India
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL USA
- Department of Pharmacogenomics and Translational Research, Nemours Children’s Specialty Care, Jacksonville, FL USA
| | - Syed Mudabir Ahmad
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Jammu, 180001 India
| | - Reyaz Ur Rasool
- Perelman School of Medicine, Cancer Biology Division, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sumit G. Gandhi
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001 India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Jammu, 180001 India
| |
Collapse
|
7
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
8
|
Castillo-Tandazo W, Mutsaers AJ, Walkley CR. Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Curr Osteoporos Rep 2019; 17:343-352. [PMID: 31529263 DOI: 10.1007/s11914-019-00534-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Osteosarcoma (OS) is the most common cancer of bone, yet is classified as a rare cancer. Treatment and outcomes for OS have not substantively changed in several decades. While the decoding of the OS genome greatly advanced the understanding of the mutational landscape of OS, immediately actionable therapeutic targets were not apparent. Here we describe recent preclinical models that can be leveraged to identify, test, and prioritize therapeutic candidates. RECENT FINDINGS The generation of multiple high fidelity murine models of OS, the spontaneous disease that arises in pet dogs, and the establishment of a diverse collection of patient-derived OS xenografts provide a robust preclinical platform for OS. These models enable evidence to be accumulated across multiple stages of preclinical evaluation. Chemical and genetic screening has identified therapeutic targets, often demonstrating cross species activity. Clinical trials in both PDX models and in canine OS have effectively tested new therapies for prioritization. Improving clinical outcomes in OS has proven elusive. The integrated target discovery and testing possible through a cross species platform provides validation of a putative target and may enable the rigorous evaluation of new therapies in models where endpoints can be rapidly assessed.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Carl R Walkley
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
9
|
Protein Kinase B and Extracellular Signal-Regulated Kinase Inactivation is Associated with Regorafenib-Induced Inhibition of Osteosarcoma Progression In Vitro and In Vivo. J Clin Med 2019; 8:jcm8060900. [PMID: 31238539 PMCID: PMC6616516 DOI: 10.3390/jcm8060900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer. Multimodality treatment involving chemotherapy, radiotherapy and surgery is not effective enough to control osteosarcoma. Regorafenib, the oral multi-kinase inhibitor, has been shown to have positive efficacy on disease progression delay in chemotherapy resistant osteosarcoma patients. However anti-cancer effect and mechanism of regorafenib in osteosarcoma is ambiguous. Thus, the aim of this study is to investigate the efficacy and molecular mechanism of regorafenib on osteosarcoma in vitro and in vivo. Human osteosarcomas U-2 OS or MG-63 were treated with regorafenib, miltefosine (protein kinase B (AKT) inhibitor), or PD98059 (mitogen-activated protein/extracellular signal-regulated kinase (MEK) pathway inhibitor) for 24 or 48 h. Cell viability, apoptotic signaling transduction, tumor invasion, expression of tumor progression-associated proteins and tumor growth after regorafenib treatment were assayed by MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, transwell assay, Western blotting assay and in vivo animal experiment, respectively. In these studies, we also indicated that regorafenib suppressed cell growth by prompting apoptosis of osteosarcoma cells, which is mediated through inactivation of ERK and AKT signaling pathways. After regorafenib treatment, downregulation of related genes in invasion (vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9)), proliferation (CyclinD1) and anti-apoptosis (X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia-1 (MCL-1), and cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP)) were found. Moreover, upregulation of caspase-3 and caspase-8 cleavage were also observed. In sum, we suggest that regorafenib has potential to suppress osteosarcoma progression via inactivation of AKT and ERK mediated signaling pathway.
Collapse
|
10
|
Wirries A, Jabari S, Jansen EP, Roth S, Figueroa-Juárez E, Wissniowski TT, Neureiter D, Klieser E, Lechler P, Ruchholtz S, Bartsch DK, Boese CK, Di Fazio P. Panobinostat mediated cell death: a novel therapeutic approach for osteosarcoma. Oncotarget 2018; 9:32997-33010. [PMID: 30250645 PMCID: PMC6152475 DOI: 10.18632/oncotarget.26038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is an aggressive cancer with a poor long term prognosis. Neo-adjuvant poly-chemotherapy followed by surgical resection remains the standard treatment, which is restricted by multi-drug resistance. If first-line therapy fails, disease control and patient survival rate drop dramatically. We aimed to identify alternative apoptotic mechanisms induced by the histone deacetylase inhibitor panobinostat in osteosarcoma cells. Saos-2, MG63 and U2-OS osteosarcoma cell lines, the immortalized human osteoblast line hFOB and the mouse embryo osteoblasts (MC3T3-E1) were treated with panobinostat. Real time viability and FACS confirmed the cytotoxicity of panobinostat. Cell stress/death related factors were analysed by RT-qPCR and western blot. Cell morphology was assessed by electron microscopy. 10 nM panobinostat caused cell viability arrest and death in all osteosarcoma and osteoblast cells. P21 up-regulation was observed in osteosarcoma cells, while over-expression of p73 was restricted to Saos-2 (TP53-/-). Survivin and Bcl-2 were suppressed by panobinostat. Endoplasmic reticulum (ER) stress markers BiP, CHOP, ATF4 and ATF6 were induced in osteosarcoma cells. The un-spliced Xbp was no further detectable after treatment. Autophagy players Beclin1, Map1LC3B and UVRAG transcripts over-expressed after 6 hours. Protein levels of Beclin1, Map1LC3B and p62 were up-regulated at 72 hours. DRAM1 was stable. Electron micrographs revealed the fragmentation and the disappearance of the ER and the statistically significant increase of autophagosome vesiculation after treatment. Panobinostat showed a synergistic suppression of survival and promotion of cell death in osteosarcoma cells. Panobinostat offers new perspectives for the treatment of osteosarcoma and other malignant bone tumours.
Collapse
Affiliation(s)
- André Wirries
- 1 Center of Orthopaedics and Trauma Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
- 8 Orthopaedic Clinics, Hessing Foundation, 86199 Augsburg, Germany
| | - Samir Jabari
- 2 Institute of Anatomy I, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Esther P. Jansen
- 1 Center of Orthopaedics and Trauma Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Silvia Roth
- 3 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Elizabeth Figueroa-Juárez
- 3 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Thaddeus T. Wissniowski
- 4 Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Daniel Neureiter
- 5 Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
- 6 Salzburg Cancer Research Institute, 5020 Salzburg, Austria
| | - Eckhard Klieser
- 5 Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
- 6 Salzburg Cancer Research Institute, 5020 Salzburg, Austria
| | - Philipp Lechler
- 1 Center of Orthopaedics and Trauma Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Steffen Ruchholtz
- 1 Center of Orthopaedics and Trauma Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Detlef K. Bartsch
- 3 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| | - Christoph K. Boese
- 7 Department of Orthopaedic and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Pietro Di Fazio
- 3 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Baldingerstrasse 35043 Marburg, Germany
| |
Collapse
|
11
|
Wood PJ, Strong R, McArthur GA, Michael M, Algar E, Muscat A, Rigby L, Ferguson M, Ashley DM. A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors. Cancer Chemother Pharmacol 2018; 82:493-503. [PMID: 29987369 DOI: 10.1007/s00280-018-3634-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This was an open label, phase I (3 + 3 design), multi-centre study evaluating panobinostat in pediatric patients with refractory solid tumors. METHODS Primary endpoints were to establish MTD, define and describe associated toxicities, including dose limiting toxicities (DLT) and to characterize its pharmacokinetics (PK). Secondary endpoints included assessing the anti-tumour activity of panobinostat, and its biologic activity, by measuring acetylation of histones in peripheral blood mononuclear cells. RESULTS Nine patients were enrolled and treated with intravenous panobinostat at a dosing level of 15 mg/m2 which was tolerated. Six were evaluable for adverse events. Two (33%) patients experienced Grade 3-4 thrombocytopenia, 1 (17%) experienced Grade 3 anemia, and 2 (33%) experienced Grade 3 neutropenia. Grade 4 drug related pain occurred in 2 (33%) of the patients studied. Two (33%) patients experienced a Grade 2 QTcF change (0.478 ± 0.006 ms). One cardiac DLT (T wave changes) was reported. PK values for 15 mg/m2 (n = 9) dosing were: Tmax 0.8 h, Cmax 235.2 ng/mL, AUC0-t 346.8 h ng/mL and t1/2 7.3 h. Panobinostat significantly induced acetylation of histone H3 and H4 at all time points measured when compared to pre-treatment samples (p < 0.05). Pooled quantitative Western blot data confirmed that panobinostat significantly induced acetylation of histone H4 at 6 h (p < 0.01), 24 h (p < 0.01) and 28-70 h (p < 0.01) post dose. CONCLUSION A significant biological effect of panobinostat, measured by acetylation status of histone H3 and H4, was achieved at a dose of 15 mg/m2. PK data and drug tolerability at 15 mg/m2 was similar to that previously published.
Collapse
Affiliation(s)
- Paul J Wood
- Department of Paediatrics, Monash University, Melbourne, Australia. .,Children's Cancer Centre, Monash Children's Hospital, Melbourne, Australia. .,Molecular Oncology and Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Robyn Strong
- Australian & New Zealand Children's Haematology/Oncology Group (ANZCHOG), Melbourne, Australia
| | - Grant A McArthur
- Molecular Oncology and Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Elizabeth Algar
- Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Melbourne, Australia
| | - Andrea Muscat
- Deakin University, School of Medicine, Geelong, Australia
| | - Lin Rigby
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Expression patterns of class I histone deacetylases in osteosarcoma: a novel prognostic marker with potential therapeutic implications. Mod Pathol 2018; 31:264-274. [PMID: 28984297 PMCID: PMC5811636 DOI: 10.1038/modpathol.2017.125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
Epigenetic aberrations are recognized as having pivotal roles in cancer etiology and progression. Histone deacetylases are among the most studied epigenetic modulators in various cancer types. The expression levels of class I histone deacetylase isoforms 1, 2, and 3 in patient-derived primary osteosarcoma cells (6 cases) was investigated, comparing them to normal bone graft-derived osteoblasts (6 cases) using the immunoblotting technique. Expression profiles of histone deacetylases in high-grade osteosarcoma tissue of 89 patients were examined and their association with clinicopathologic parameters and the patient survival was evaluated. Histone deacetylases were immunohistochemically stained on formalin-fixed paraffin-embedded biopsied tissue. Primary osteosarcoma cells expressed higher levels of histone deacetylase 1 and histone deacetylase 2, but lower levels of histone deacetylase 3 compared to benign osteoblasts. Overall, 82, 99, and 93% of 89 osteosarcomas showed nuclear expression of the histone deacetylase isoforms 1, 2, and 3, respectively. Low levels of histone deacetylase 1 were significantly associated with a high Enneking stage (P=0.014) and the presence of initial metastasis (P=0.040), while low levels of histone deacetylase 3 were significantly correlated with age >15 years (P=0.026). Univariate survival analysis found significantly shorter survival in the patients with a high Enneking stage (P<0.001), axial location (P=0.009), presence of initial metastasis (P<0.001), low-histone deacetylase 1 expression (P=0.038), and low-all-histone deacetylases expression (P=0.016). Multivariate survival analysis showed that only axial location (P=0.011) and low-all-histone deacetylases expression (P=0.039) were independent prognostic factors. In subgroup analysis of stage IIB patients (n=45), only axial location and low-all-histone deacetylases expression were associated with shorter survival in both univariate and multivariate analysis (axial location, P=0.008 and 0.010; low-all-HDACs, P=0.013 and 0.038, respectively). Low levels of all-histone deacetylases expression were significantly associated with advanced disease status and short survival. These findings may be a guide to future use of histone deacetylase inhibitors in osteosarcoma patients.
Collapse
|
13
|
Szczepny A, Carey K, McKenzie L, Jayasekara WSN, Rossello F, Gonzalez-Rajal A, McCaw AS, Popovski D, Wang D, Sadler AJ, Mahar A, Russell PA, Wright G, McCloy RA, Garama DJ, Gough DJ, Baylin SB, Burgess A, Cain JE, Watkins DN. The tumor suppressor Hic1 maintains chromosomal stability independent of Tp53. Oncogene 2018; 37:1939-1948. [PMID: 29367758 PMCID: PMC5886987 DOI: 10.1038/s41388-017-0022-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Hypermethylated-in-Cancer 1 (Hic1) is a tumor suppressor gene frequently inactivated by epigenetic silencing and loss-of-heterozygosity in a broad range of cancers. Loss of HIC1, a sequence-specific zinc finger transcriptional repressor, results in deregulation of genes that promote a malignant phenotype in a lineage-specific manner. In particular, upregulation of the HIC1 target gene SIRT1, a histone deacetylase, can promote tumor growth by inactivating TP53. An alternate line of evidence suggests that HIC1 can promote the repair of DNA double strand breaks through an interaction with MTA1, a component of the nucleosome remodeling and deacetylase (NuRD) complex. Using a conditional knockout mouse model of tumor initiation, we now show that inactivation of Hic1 results in cell cycle arrest, premature senescence, chromosomal instability and spontaneous transformation in vitro. This phenocopies the effects of deleting Brca1, a component of the homologous recombination DNA repair pathway, in mouse embryonic fibroblasts. These effects did not appear to be mediated by deregulation of Hic1 target gene expression or loss of Tp53 function, and rather support a role for Hic1 in maintaining genome integrity during sustained replicative stress. Loss of Hic1 function also cooperated with activation of oncogenic KRas in the adult airway epithelium of mice, resulting in the formation of highly pleomorphic adenocarcinomas with a micropapillary phenotype in vivo. These results suggest that loss of Hic1 expression in the early stages of tumor formation may contribute to malignant transformation through the acquisition of chromosomal instability.
Collapse
Affiliation(s)
- Anette Szczepny
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Kirstyn Carey
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Lisa McKenzie
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | | | - Fernando Rossello
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Alvaro Gonzalez-Rajal
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andrew S McCaw
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia
| | - Dean Popovski
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Die Wang
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Anthony J Sadler
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Annabelle Mahar
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Prudence A Russell
- Department of Pathology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Gavin Wright
- Department of Surgery, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Rachael A McCloy
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Daniel J Garama
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Stephen B Baylin
- The Sidney Kimmel Cancer Centre at Johns Hopkins, Baltimore, MD, USA
| | - Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute for Medical Research, Clayton, VIC, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,St Vincent's Clinical School, UNSW Faculty of Medicine, Sydney, NSW, Australia. .,Department of Thoracic Medicine, St Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Re-calculating! Navigating through the osteosarcoma treatment roadblock. Pharmacol Res 2016; 117:54-64. [PMID: 27940205 DOI: 10.1016/j.phrs.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
Abstract
The survival rates for patients with osteosarcoma have remained almost static for the past three decades. Current standard of care therapy includes chemotherapies such as doxorubicin, cisplatin, and methotrexate along with complete surgical resection and surgery with or without ifosfamide and etoposide for relapse, though outcomes are hoped to be improved through clinical trials. Additionally, increased understanding of the genetics, signaling pathways and microenvironmental factors driving the disease have led to the identification of promising agents and potential paths towards translation of an exciting array of novel targeted therapies. Here, we review the mechanism of action of these emerging therapies and how, with clinical translation, they can potentially improve the survival rates for osteosarcoma patients in the near future.
Collapse
|
16
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15:999-1017. [PMID: 27628712 PMCID: PMC6398529 DOI: 10.1111/acel.12518] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
To date, dozens of stress‐induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence‐like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.
Collapse
Affiliation(s)
| | - Artem K. Velichko
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
| | - Sergey V. Razin
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- Department of Molecular Biology Lomonosov Moscow State University 119991 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| | - Omar L. Kantidze
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| |
Collapse
|
17
|
Waldeck K, Cullinane C, Ardley K, Shortt J, Martin B, Tothill RW, Li J, Johnstone RW, McArthur GA, Hicks RJ, Wood PJ. Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. Int J Cancer 2016; 139:194-204. [PMID: 26914605 DOI: 10.1002/ijc.30056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023]
Abstract
Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Kelly Waldeck
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kerry Ardley
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Jake Shortt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Ben Martin
- Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, Bioinformatics Core Facility, East Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, St.Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Wood
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Children's Cancer Centre, Monash Health, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Zhang Y, Liu S, Wang H, Yang W, Li F, Yang F, Yu D, Ramsey FV, Tuszyski GP, Hu W. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NFκB signaling. Oncotarget 2016; 6:6160-78. [PMID: 25704885 PMCID: PMC4467429 DOI: 10.18632/oncotarget.3349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
Regulatory mechanisms underlying constitutive and inducible NFκB activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NFκB-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NFκB luciferase reporter, thus sensitizing the cells to TNFα-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNFα-dependent manner. NIBP knockdown transiently attenuated TNFα-stimulated phosphorylation of IKK2/p65 and degradation of IκBα. In contrast, NIBP overexpression enhanced TNFα-induced NFκB activation, thus inhibiting constitutive and TNFα-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NFκΒ signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shu Liu
- Department of Biotherapy, The Forth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wensheng Yang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fan Yang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Frederick V Ramsey
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - George P Tuszyski
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Muscat A, Popovski D, Jayasekara WSN, Rossello FJ, Ferguson M, Marini KD, Alamgeer M, Algar EM, Downie P, Watkins DN, Cain JE, Ashley DM. Low-Dose Histone Deacetylase Inhibitor Treatment Leads to Tumor Growth Arrest and Multi-Lineage Differentiation of Malignant Rhabdoid Tumors. Clin Cancer Res 2016; 22:3560-70. [PMID: 26920892 DOI: 10.1158/1078-0432.ccr-15-2260] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant rhabdoid tumor (MRT) and atypical teratoid rhabdoid tumors (ATRT) are rare aggressive undifferentiated tumors primarily affecting the kidney and CNS of infants and young children. MRT are almost exclusively characterized by homozygous deletion or inactivation of the chromatin remodeling gene SMARCB1 SMARCB1 protein loss leads to direct impairment of chromatin remodeling and we have previously reported a role for this protein in histone acetylation. This provided the rationale for investigating the therapeutic potential of histone deactylase inhibitors (HDACi) in MRT. EXPERIMENTAL DESIGN Whereas previously HDACis have been used at doses and schedules that induce cytotoxicity, in the current studies we have tested the hypothesis, both in vitro and in vivo, that sustained treatment of human MRT with low-dose HDACi can lead to sustained cell growth arrest and differentiation. RESULTS Sustained low-dose panobinostat (LBH589) treatment led to changes in cellular morphology associated with a marked increase in the induction of neural, renal, and osteoblast differentiation pathways. Genome-wide transcriptional profiling highlighted differential gene expression supporting multilineage differentiation. Using mouse xenograft models, sustained low-dose LBH589 treatment caused tumor growth arrest associated with tumor calcification detectable by X-ray imaging. Histological analysis of LBH589-treated tumors revealed significant regions of ossification, confirmed by Alizarin Red staining. Immunohistochemical analysis showed increased TUJ1 and PAX2 staining suggestive of neuronal and renal differentiation, respectively. CONCLUSIONS Low-dose HDACi treatment can terminally differentiate MRT tumor cells and reduce their ability to self-renew. The use of low-dose HDACi as a novel therapeutic approach warrants further investigation. Clin Cancer Res; 22(14); 3560-70. ©2016 AACR.
Collapse
Affiliation(s)
- Andrea Muscat
- Cancer Services, Barwon Health, Geelong, Victoria, Australia. School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Dean Popovski
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - W Samantha N Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia. Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Melissa Ferguson
- Cancer Services, Barwon Health, Geelong, Victoria, Australia. School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Kieren D Marini
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Muhammad Alamgeer
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Medical Oncology, Monash Medical Centre, East Bentleigh, Victoria, Australia
| | - Elizabeth M Algar
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Peter Downie
- Children's Cancer Centre, Monash Children's Hospital, Monash Health, Victoria, Australia. Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia. The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia. Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - David M Ashley
- Cancer Services, Barwon Health, Geelong, Victoria, Australia. School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
20
|
Marie PJ. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 2015; 72:1347-61. [PMID: 25487608 PMCID: PMC11113967 DOI: 10.1007/s00018-014-1801-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM UMR-1132, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| |
Collapse
|
21
|
A paradigm for cybernetics, regulatory circuits and ultra-stability in cancer biology and treatment. Leuk Res 2014; 38:1158-9. [PMID: 25139848 DOI: 10.1016/j.leukres.2014.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
|
22
|
Dumont SN, Yang D, Dumont AG, Reynoso D, Blay JY, Trent JC. Targeted polytherapy in small cell sarcoma and its association with doxorubicin. Mol Oncol 2014; 8:1458-68. [PMID: 24998445 DOI: 10.1016/j.molonc.2014.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 12/19/2022] Open
Abstract
A paradigm shift has occurred in the last decade from chemotherapy to targeted therapy for the management of many patients with advanced sarcoma. This work identifies a combination of targeted agents and doxorubicin that are effective against small cell sarcoma cell lines. Three small cell sarcoma cell lines were studied: RD18 (rhabdomyosarcoma), A204 (undifferentiated sarcoma) and TC 71 (Ewing's sarcoma). Each cell line was exposed to increasing concentrations of vorinostat (HDAC inhibitor), 17-DMAG (HSP90 inhibitor), abacavir (anti-telomerase) or sorafenib (tyrosine kinase inhibitor) alone, combined with one another, or combined with doxorubicin. Cell viability, cell cycle analysis and apoptosis were assessed by MTS assay, propidium iodide-Annexin V staining, and caspase 3/7 activity, respectively. The Chou and Talalay combination index (CI) was used to determine whether the effects were additive (CI = 1), synergistic (CI < 1) or antagonistic (CI > 1). In monotherapy, targeted agents achieved 30-90% reductions in viability, with the exception of abacavir. Dual-targeted combination therapies with vorinostat, sorafenib and 17-DMAG demonstrated synergy. Abacavir was antagonistic with every other drug and was not further studied. Both vorinostat and 17-DMAG synergized with doxorubicin, achieving 60% cell killing compared to 12% with doxorubicin alone. No synergy was observed for sorafenib with doxorubicin. The triple therapy vorinostat, 17-DMAG and doxorubicin did not show synergy, but increased the subG1 population at 24H, from 30% to 70% compared to monotherapies with an increase in apoptosis. This work provides evidence of synergy of combinations of vorinostat, 17-DMAG and sorafenib in small cell sarcoma. In addition to doxorubicin, these combinations enhance doxorubicin cytotoxicity at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- S N Dumont
- University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA; Medical Oncology Department, Saint-Antoine Hospital, Public Assistance of Paris Hospitals, Pierre and Marie Curie University, Paris VI, Paris, France
| | - D Yang
- University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - A G Dumont
- University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - D Reynoso
- University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - J-Y Blay
- Claude Bernard Lyon I University, Centre Léon Bérard, Lyon, France
| | - J C Trent
- University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
23
|
Separate and combined effects of DNMT and HDAC inhibitors in treating human multi-drug resistant osteosarcoma HosDXR150 cell line. PLoS One 2014; 9:e95596. [PMID: 24756038 PMCID: PMC3995708 DOI: 10.1371/journal.pone.0095596] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms underlying multi-drug resistance (MDR) is one of the major challenges in current cancer research. A phenomenon which is common to both intrinsic and acquired resistance, is the aberrant alteration of gene expression in drug-resistant cancers. Although such dysregulation depends on many possible causes, an epigenetic characterization is considered a main driver. Recent studies have suggested a direct role for epigenetic inactivation of genes in determining tumor chemo-sensitivity. We investigated the effects of the inhibition of DNA methyltransferase (DNMT) and hystone deacethylase (HDAC), considered to reverse the epigenetic aberrations and lead to the re-expression of de novo methylated genes in MDR osteosarcoma (OS) cells. Based on our analysis of the HosDXR150 cell line, we found that in order to reduce cell proliferation, co-treatment of MDR OS cells with DNMT (5-Aza-dC, DAC) and HDAC (Trichostatin A, TSA) inhibitors is more effective than relying on each treatment alone. In re-expressing epigenetically silenced genes induced by treatments, a very specific regulation takes place which suggests that methylation and de-acetylation have occurred either separately or simultaneously to determine MDR OS phenotype. In particular, functional relationships have been reported after measuring differential gene expression, indicating that MDR OS cells acquired growth and survival advantage by simultaneous epigenetic inactivation of both multiple p53-independent apoptotic signals and osteoblast differentiation pathways. Furthermore, co-treatment results more efficient in inducing the re-expression of some main pathways according to the computed enrichment, thus emphasizing its potential towards representing an effective therapeutic option for MDR OS.
Collapse
|
24
|
Geng S, Sun B, Lu R, Wang J. Coleusin factor, a novel anticancer diterpenoid, inhibits osteosarcoma growth by inducing bone morphogenetic protein-2-dependent differentiation. Mol Cancer Ther 2014; 13:1431-41. [PMID: 24723453 DOI: 10.1158/1535-7163.mct-13-0934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coleusin factor is a diterpenoid compound isolated from the root of a tropical plant, Coleus forskohlii. Although Coleusin factor has been reported to suppress proliferation of and induce apoptosis in several types of cancer cells, the effects of Coleusin factor on osteosarcoma and the underlying mechanism are still not fully understood. In this study, we show that Coleusin factor treatment potently inhibits the growth of osteosarcoma cells associated with G(1) cell-cycle arrest. Interestingly, apoptosis and cell death are not induced. Instead, Coleusin factor causes osteosarcoma cells to exhibit typical properties of differentiated osteoblasts, including a morphologic alteration resembling osteoblasts, the expression of osteoblast differentiation markers, elevated alkaline phosphatase activity, and increased cellular mineralization. Coleusin factor treatment significantly increases the expression of bone morphogenetic protein-2 (BMP-2), a crucial osteogenic regulator, and runt-related transcription factor 2 (RUNX2), one of the key transcription factors of the BMP pathway. When BMP-2 signaling is blocked, Coleusin factor fails to inhibit cell proliferation and to induce osteoblast differentiation. Thus, upregulation of BMP-2 autocrine is critical for Coleusin factor to induce osteoblast differentiation and exert its anticancer effects on osteosarcoma. Importantly, administration of Coleusin factor inhibits the growth of osteosarcoma xenografted in nude mice without systemic or immunologic toxicity. Osteosarcoma is a highly aggressive cancer marked by the loss of normal differentiation. Coleusin factor represents a new type of BMP-2 inducer that restores differentiation in osteosarcoma cells. It may provide a promising therapeutic strategy against osteosarcoma with minimal side effects.
Collapse
Affiliation(s)
- Shuo Geng
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Bo Sun
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, VirginiaAuthors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Ran Lu
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Jingze Wang
- Authors' Affiliations: State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Graduate University of Chinese Academy of Sciences; Department of Biology, Capital Normal University, Beijing, China; and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|