1
|
Xiao T, Cheng X, Zhi Y, Tian F, Wu A, Huang F, Tao L, Guo Z, Shen X. Ameliorative effect of Alangium chinense (Lour.) Harms on rheumatoid arthritis by reducing autophagy with targeting regulate JAK3-STAT3 and COX-2 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117133. [PMID: 37690476 DOI: 10.1016/j.jep.2023.117133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alangium chinense has been used as traditional folk medicine for centuries to treat rheumatoid arthritis (RA) by Guizhou Miao nationality with remarkable clinical effect. But the mechanism of its anti-RA is not fully clarified. AIM OF THE STUDY To explore the effect and underlying mechanism of A. chinense against RA. MATERIAL AND METHODS RA rats were induced by CII/IFA, and oral administrated with or without ethyl acetate extracts of Alangium chinense (ACEE) and tripterygium glycosides (GTW). Then arthritis scores, inflammatory factors in serum and histological evaluation were evaluated to assess the degree of joints disease. Proteomics were conducted via LC-MS/MS to clarify the mechanism of ACEE preliminarily, and further examined by immunohistochemistry, immunofluorescence, western botting, and molecular docking. RESULTS ACEE decreased joints swelling, cell abscission and necrosis of joint tissues arthropathy of RA rats, and attenuated expression of TNF-α, IL-1β, IL-6, PGE2, TGF-β. Meanwhile, differentially expressed proteins in the ACEE treated groups were observed, which were involved in RA, spliceosome, cell adhesion molecules, phagosome and lysosome signaling pathways. Moreover, ACEE significantly ameliorated arthropathy, suppressed JAK-STAT pathway (JAK3, p-JAK3, STAT3, iNOS, RANKL), COX-2 pathway (COX-2, TNF-α, IL-6I, L-1β, 5-LOX), and autophagic signaling pathway (LC3-Ⅰ, LC3-Ⅱ, p62, mTOR). But it showed little effect on the expression of COX-1, JAK1, JAK2, TyK2. CONCLUSION It is the first evidence that A. chinense significantly ameliorates RA, and the underlying immune mechanism involves reducing autophagy with targeting regulate JAK3-STAT3 and COX-2 pathways.
Collapse
Affiliation(s)
- Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Xingyan Cheng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Yuan Zhi
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Fangfang Tian
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Ai Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Feilong Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| | - Zhenghong Guo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China.
| |
Collapse
|
2
|
Ryan RYM, Lutzky VP, Herzig V, Smallwood TB, Potriquet J, Wong Y, Masci P, Lavin MF, King GF, Lopez JA, Ikonomopoulou MP, Miles JJ. Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins (Basel) 2020; 12:toxins12110674. [PMID: 33114591 PMCID: PMC7693913 DOI: 10.3390/toxins12110674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Correspondence: (R.Y.M.R.); (J.J.M.)
| | - Viviana P. Lutzky
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
- GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor B. Smallwood
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
| | - Paul Masci
- Translational Research Institute, Brisbane, QLD 4102, Australia;
| | - Martin F. Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Maria P. Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
- Correspondence: (R.Y.M.R.); (J.J.M.)
| |
Collapse
|
3
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Zhang Z, Zhang R, Li L, Zhu L, Gao S, Lu Q, Gu Y, Zhang Y, Yang H, Hou T, Zhen X, Zheng LT. Macrophage migration inhibitory factor (MIF) inhibitor, Z-590 suppresses cartilage destruction in adjuvant-induced arthritis via inhibition of macrophage inflammatory activation. Immunopharmacol Immunotoxicol 2018; 40:149-157. [PMID: 29447014 DOI: 10.1080/08923973.2018.1424896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator that is involved in the progression of rheumatoid arthritis (RA). Previously, we demonstrated a small molecule compound 3-[(biphenyl-4-ylcarbonyl) carbamothioyl] amino benzoic acid (Z-590) could inhibit MIF activity with docking-based virtual screening and experimental evaluation. METHODS The LPS activated RAW264.7 macrophage cells were used to determine the anti-inflammatory effects of Z-590 in vitro. A rat adjuvant-induced arthritis (AIA) model was used to determine the anti-arthritic effects of Z-590 in vivo. RESULTS MIF inhibitor Z-590 significantly inhibited the production of NO, TNF-α and IL-6 in LPS-activated RAW 264.7 macrophage cells and markedly inhibited LPS-induced expression of TNF-α, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Z-590 also significantly reduced paw edema, serum level of TNF-α, IL-6 and spleen index in the adjuvant-induced arthritis (AIA) rat model. Furthermore, Z-590 markedly ameliorated joint inflammation and articular cartilage damage in AIA rat model. CONCLUSION MIF inhibitor Z-590 possesses potent anti-arthritic activity through suppression of macrophage activation, and could be a potential therapeutic treatment for RA.
Collapse
Affiliation(s)
- Zhiyu Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Rong Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Linlang Li
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Lijun Zhu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Shiyuan Gao
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Qiran Lu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Yihui Gu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Yu Zhang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Huicui Yang
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Tingjun Hou
- b College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Xuechu Zhen
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| | - Long Tai Zheng
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases and College of Pharmaceutical Sciences , The Collaborative Innovation Center for Brain Science, Soochow University , Suzhou , Jiangsu , PR China
| |
Collapse
|
5
|
Zhu Q, Huang J, Wang SZ, Qin ZH, Lin F. Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:1087-1095. [PMID: 27840083 DOI: 10.1016/j.jep.2016.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Naja atra (Chinese cobra), primarily distributing in the low or medium altitude areas of southern China and Taiwan, was considered as a medicine in traditional Chinese medicine and used to treat pain, inflammation and arthritis. AIM OF THE STUDY To study the anti-inflammatory and anti-arthritic activities of cobrotoxin (CTX), an active component of the venom from Naja atra. MATERIALS AND METHODS Adjuvant-induced arthritis (AA) rats were used as the animal model of rheumatoid arthritis. The anti-arthritic effects of CTX were evaluated through the arthritis score, paw edema and histopathology changes of joints. The anti-inflammation effects were assayed by the level of IL-6, TNF-α, IL-1β and the number of inflammatory cells in peripheral blood, as well as the proliferation of fibroblast-like synoviocytes (FLS). The immune level was valued by the proliferation of T cells and the level of CD4 and CD8. RESULTS CTX alleviated the disease development of AA rats according to the ameliorating arthritis score, paw edema and histopathology character. At the meanwhile, CTX decreased the levels of IL-6, TNF-α, IL-1β and the numbers of inflammatory cells in peripheral blood. CTX also suppressed the abnormal increasing of CD4+ T cells/ CD8+ T cells ratio, and could significantly inhibit T cell proliferation. Consistent with its effects on inhibiting granuloma's formation, CTX inhibited the proliferation of the cultured FLSs. Further studies on inflammatory signaling in FLSs revealed that CTX could inhibit the NF-κB signaling pathway. CONCLUSIONS CTX has beneficial effects on rheumatoid arthritis by its immune regulation effects and anti-inflammation effects. The inhibition of NF-κB pathway partly contributes to the anti-inflammatory properties of CTX.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Su Zhou 215123, China..
| | - Jun Huang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Su Zhou 215123, China..
| | - Shu-Zhi Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Su Zhou 215123, China..
| | - Zheng-Hong Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Su Zhou 215123, China..
| | - Fang Lin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Su Zhou 215123, China..
| |
Collapse
|
6
|
Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:450581. [PMID: 26640497 PMCID: PMC4658410 DOI: 10.1155/2015/450581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/09/2015] [Accepted: 09/29/2015] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-β. These findings suggest that CTX may be a potential drug for chronic kidney diseases.
Collapse
|
7
|
Xu YL, Kou JQ, Wang SZ, Chen CX, Qin ZH. Neurotoxin from Naja naja atra venom inhibits skin allograft rejection in rats. Int Immunopharmacol 2015; 28:188-98. [PMID: 26071222 DOI: 10.1016/j.intimp.2015.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recent studies reported that Naja naja atra venom (NNAV) regulated immune function and had a therapeutic effect on adjunctive arthritis and nephropathy. We hypothesized that NNAV and its active component, neurotoxin (NTX), might inhibit skin allograft rejection. METHODS Skin allografts were used to induce immune rejection in rats. In addition, mixed lymphocyte culture (MLC) was used to mimic immune rejection reaction in vitro. Both NNAV and NTX were orally given starting from 5days prior to skin allograft surgery. RESULTS The results showed that oral administration of NNAV or NTX prolonged the survival of skin allografts and inhibited inflammatory response. The production of Th1 cytokines (IFN-γ, IL-2) was also suppressed. NTX inhibited T-cell proliferation and CD4(+) T cell division induced by skin allografts. NTX also showed immunosuppressive activity in mixed lymphocyte culture. Atropine alone inhibited Con A-induced proliferation of T cells and potentiated NTX' s inhibitory effects on T cells, while pilocarpine only slightly enhanced Con A-induced T cell proliferation and partially reversed the inhibitory effect of NTX. On the other hand, neither nicotine nor mecamylamine had an influence on NTX's inhibitory effects on Con A-induced T cell proliferation in vitro. NTX inhibited T cell proliferation by arresting the cell cycle at the G0/G1 phase. CONCLUSIONS The present study revealed that NNAV and NTX suppressed skin allograft rejection by inhibiting T cell-mediated immune responses. These findings suggest both NNAV and NTX as potential immunosuppressants for preventing the immune response to skin allografts.
Collapse
Affiliation(s)
- Yin-Li Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Jian-Qun Kou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Shu-Zhi Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Cao-Xin Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Suppression of Inflammation and Arthritis by Orally Administrated Cardiotoxin from Naja naja atra. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:387094. [PMID: 25767552 PMCID: PMC4341855 DOI: 10.1155/2015/387094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/20/2023]
Abstract
Cardiotoxin (CTX) from Naja naja atra venom (NNAV) reportedly had analgesic effect in animal models but its role in inflammation and arthritis was unknown. In this study, we investigated the analgesic, anti-inflammatory, and antiarthritic actions of orally administered CTX-IV isolated from NNAV on rodent models of inflammation and adjuvant arthritis. CTX had significant anti-inflammatory effects in models of egg white induced nonspecific inflammation, filter paper induced rat granuloma formation, and capillary osmosis tests. CTX significantly reduced the swelling of paw induced by egg white, the inflammatory exudation, and the formation of granulomas. CTX reduced the swelling of paw, the AA clinical scores, and pathological alterations of joint. CTX significantly decreased the number of the CD4 T cells and inhibited the expression of relevant proinflammatory cytokines IL-17 and IL-6. CTX significantly inhibited the secretion of proinflammatory cytokine IL-6 and reduced the level of p-STAT3 in FLS. These results suggest that CTX inhibits inflammation and inflammatory pain and adjuvant-induced arthritis. CTX may be a novel therapeutic drug for treatment of arthritis.
Collapse
|
9
|
Cui K, Kou JQ, Gu JH, Han R, Wang G, Zhen X, Qin ZH. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:461. [PMID: 25465226 PMCID: PMC4258260 DOI: 10.1186/1472-6882-14-461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/14/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. METHODS To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. RESULTS The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. CONCLUSIONS The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.
Collapse
|
10
|
Gomes A, Datta P, Das T, Biswas AK, Gomes A. Anti arthritic and anti inflammatory activity of a cytotoxic protein NN-32 from Indian spectacle cobra (Naja naja) venom in male albino rats. Toxicon 2014; 90:106-10. [DOI: 10.1016/j.toxicon.2014.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/14/2014] [Accepted: 07/04/2014] [Indexed: 12/26/2022]
|
11
|
Naja naja atra Venom Protects against Manifestations of Systemic Lupus Erythematosus in MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:969482. [PMID: 25093033 PMCID: PMC4100264 DOI: 10.1155/2014/969482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease and effective therapy for this pathology is currently unavailable. We previously reported that oral administration of Naja naja atra venom (NNAV) had anti-inflammatory and immune regulatory actions. We speculated that NNAV may have therapeutic effects in MRL/lpr SLE mice. Twelve-week-old MRL/lpr mice received oral administration of NNAV (20, 40, and 80 μg/kg) or Tripterygium wilfordii polyglycosidium (10 mg/kg) daily for 16 weeks. The effects of NNAV on SLE manifestations, including skin erythema, proteinuria, and anxiety-like behaviors, were assessed with visual inspection and Multistix 8 SG strips and open field test, respectively. The pathology of spleen and kidney was examined with H&E staining. The changes in autoimmune antibodies and cytokines were determined with ELISA kits. The results showed that NNAV protected against the manifestation of SLE, including skin erythema and proteinuria. In addition, although no apparent histological change was found in liver and heart in MRL/lpr SLE mice, NNAV reduced the levels of glutamate pyruvate transaminase and creatine kinase. Furthermore, NNAV increased serum C3 and reduced concentrations of circulating globulin, anti-dsDNA antibody, and inflammatory cytokines IL-6 and TNF-α. NNAV also reduced lymphadenopathy and renal injury. These results suggest that NNAV may have therapeutic values in the treatment of SLE by inhibiting autoimmune responses.
Collapse
|
12
|
Differential Effects of Naja naja atra Venom on Immune Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:287631. [PMID: 25024726 PMCID: PMC4082923 DOI: 10.1155/2014/287631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.
Collapse
|
13
|
Chen YJ, Lin HC, Chen KC, Lin SR, Cheng TL, Chang LS. Taiwan cobra phospholipase A2 suppresses ERK-mediated ADAM17 maturation, thus reducing secreted TNF-α production in human leukemia U937 cells. Toxicon 2014; 86:79-88. [PMID: 24874889 DOI: 10.1016/j.toxicon.2014.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
The goal of this study was to explore the signaling pathway regulating the processing of proADAM17 into ADAM17 in Taiwan cobra phospholipase A2 (PLA2)-treated human leukemia U937 cells. PLA2 induced reactive oxygen species (ROS)-elicited p38 MAPK activation and ERK inactivation in U937 cells. Catalytically inactive bromophenacylated PLA2 (BPB-PLA2) and PLA2 mutants evoked Ca(2+)-mediated p38 MAPK activation, and the level of phosphorylated ERK remained unchanged. PLA2 treatment reduced mature ADAM17 expression and secreted TNF-α (sTNF-α) production. Co-treatment of SB202190 (p38 MAPK inhibitor) and catalytically inactive PLA2 increased ERK phosphorylation, ADAM17 maturation and sTNF-α production. Nevertheless, mRNA levels of ADAM17 and TNF-α were insignificantly altered after PLA2 and SB202190/BPB-PLA2 treatment. ADAM17 activity assay and knock-down of ADAM17 revealed that ADAM17 was involved in sTNF-α production. Restoration of ERK activation increased the processing of proADAM17 into ADAM17 in PLA2-treated cells, while inactivation of ERK reduced ADAM17 maturation in untreated and SB202190/BPB-PLA2-treated cells. Removal of cell surface heparan sulfate abrogated PLA2 and SB202190/BPB-PLA2 effect on ADAM17 maturation. Taken together, the present data reveal that PLA2 suppresses ERK-mediated ADAM17 maturation, thus reducing sTNF-α production in U937 cells. Moreover, the binding with heparan sulfate is crucial for the PLA2 effect.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Hui-Chen Lin
- Department of Nutrition Room, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shinne-Ren Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
14
|
Ding ZH, Xu LM, Wang SZ, Kou JQ, Xu YL, Chen CX, Yu HP, Qin ZH, Xie Y. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:621756. [PMID: 24876873 PMCID: PMC4021839 DOI: 10.1155/2014/621756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 01/27/2023]
Abstract
Previous studies reported the oral administration of Naja naja atra venom (NNAV) reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight) via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180 μ g/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.
Collapse
Affiliation(s)
- Zhi-Hui Ding
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Li-Min Xu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Shu-Zhi Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, Jiangsu, China
| | - Jian-Qun Kou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, Jiangsu, China
| | - Yin-Li Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, Jiangsu, China
| | - Cao-Xin Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, Jiangsu, China
| | - Hong-Pei Yu
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, Jiangsu, China
| | - Yan Xie
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
15
|
Wang SZ, He H, Han R, Zhu JL, Kou JQ, Ding XL, Qin ZH. The Protective Effects of Cobra Venom from Naja naja atra on Acute and Chronic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:478049. [PMID: 23983784 PMCID: PMC3745861 DOI: 10.1155/2013/478049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of Naja naja atra venom (NNAV) on acute and chronic nephropathy in rats. Rats received 6 mg/kg adriamycin (ADR) once to evoke the chronic nephropathy or 8 ml/kg 50% v/v glycerol to produce acute renal failure (ARF). The NNAV was given orally once a day starting five days prior to ADR or glycerol injection and continued to the end of experiments. The animals were placed in metabolic cages for 24 h for urine collection for urinary protein determination. The kidney function-related biochemical changes and index of oxidative stress were determined with automatic biochemistry analyzer or colorimetric enzyme assay kits. The pathomorphological changes were observed using light and transmission electron microcopies. The levels of inflammatory cytokines and NF- κ B activation were determined using ELISA kits, Western blot analysis, or immunofluorescence. The results showed that NNAV relieved ADR-induced chronic nephropathy and glycerol-triggered acute renal failure syndromes including proteinuria, hypoalbuminemia, hyperlipidemia, serum electrolyte unbalance, renal oxidative stress, and pathological damages. NNAV reduced kidney levels of TNF- α and IL-1 β , but it increased the levels of I κ B- α and inhibited NF- κ B p65 nuclear localization. These findings suggest that NNAV may be a valuable therapeutic drug for acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - He He
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Jia-Li Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Jian-Qun Kou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Xiao-Lan Ding
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| |
Collapse
|