1
|
Shi Y, Ma C, Wu S, Ye X, Zhuang Q, Ning M, Xia J, Shen S, Dong Z, Chen D, Liu Z, Wan X. ETS translocation variant 5 (ETV5) promotes CD4 + T cell-mediated intestinal inflammation and fibrosis in inflammatory bowel diseases. Mucosal Immunol 2024; 17:584-598. [PMID: 38555025 DOI: 10.1016/j.mucimm.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4+ T cell-mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4+ T cells under T helper type 9 (Th9) cells-polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4+ T cell-specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis and CD4+ T cell-transferred recombination-activating gene-1 knockout (Rag1-/-) colitis mice, characterized by less CD4+ T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS-induced intestinal fibrosis in CD4+ T cell-specific ETV5 deletion and wild-type control mice. In vitro, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin+TAF1+ fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9-mediated profibrotic effect in vitro. These findings reveal that CD4+ T cell-derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9-mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yan Shi
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyun Ma
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xia
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dafan Chen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanju Liu
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
3
|
Shi H, Guo J, Yu Q, Hou X, Liu L, Gao M, Wei L, Zhang L, Huang W, Wang Y, Liu G, Tontonoz P, Xian X. CRISPR/Cas9 based blockade of IL-10 signaling impairs lipid and tissue homeostasis to accelerate atherosclerosis. Front Immunol 2022; 13:999470. [PMID: 36110841 PMCID: PMC9469689 DOI: 10.3389/fimmu.2022.999470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-10 (IL-10) is a widely recognized immunosuppressive factor. Although the concept that IL-10 executes an anti-inflammatory role is accepted, the relationship between IL-10 and atherosclerosis is still unclear, thus limiting the application of IL-10-based therapies for this disease. Emerging evidence suggests that IL-10 also plays a key role in energy metabolism and regulation of gut microbiota; however, whether IL-10 can affect atherosclerotic lesion development by integrating lipid and tissue homeostasis has not been investigated. In the present study, we developed a human-like hamster model deficient in IL-10 using CRISPR/Cas9 technology. Our results showed that loss of IL-10 changed the gut microbiota in hamsters on chow diet, leading to an increase in lipopolysaccharide (LPS) production and elevated concentration of LPS in plasma. These changes were associated with systemic inflammation, lipodystrophy, and dyslipidemia. Upon high cholesterol/high fat diet feeding, IL-10-deficient hamsters exhibited abnormal distribution of triglyceride and cholesterol in lipoprotein particles, impaired lipid transport in macrophages and aggravated atherosclerosis. These findings show that silencing IL-10 signaling in hamsters promotes atherosclerosis by affecting lipid and tissue homeostasis through a gut microbiota/adipose tissue/liver axis.
Collapse
Affiliation(s)
- Haozhe Shi
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiongyang Yu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lili Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lili Wei
- School of Medicine, Shihezi University, Shihezi City, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peter Tontonoz
- Department of Pathology, University of California, Los Angeles, CA, United States
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Xunde Xian,
| |
Collapse
|
4
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
5
|
Watanabe D, Kamada N. Contribution of the Gut Microbiota to Intestinal Fibrosis in Crohn's Disease. Front Med (Lausanne) 2022; 9:826240. [PMID: 35198577 PMCID: PMC8859331 DOI: 10.3389/fmed.2022.826240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
In Crohn's disease (CD), intestinal fibrosis is a critical determinant of a patient's prognosis. Although inflammation may be a prerequisite for the initiation of intestinal fibrosis, research shows that the progression or continuation of intestinal fibrosis can occur independently of inflammation. Thus, once initiated, intestinal fibrosis may persist even if medical treatment controls inflammation. Clearly, an understanding of the pathophysiological mechanisms of intestinal fibrosis is required to diminish its occurrence. Accumulating evidence suggests that the gut microbiota contributes to the pathogenesis of intestinal fibrosis. For example, the presence of antibodies against gut microbes can predict which CD patients will have intestinal complications. In addition, microbial ligands can activate intestinal fibroblasts, thereby inducing the production of extracellular matrix. Moreover, in various animal models, bacterial infection can lead to the development of intestinal fibrosis. In this review, we summarize the current knowledge of the link between intestinal fibrosis in CD and the gut microbiota. We highlight basic science and clinical evidence that the gut microbiota can be causative for intestinal fibrosis in CD and provide valuable information about the animal models used to investigate intestinal fibrosis.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Isaria cicadae Miquel prevents intestinal fibrosis by activating transforming growth factor-β1 signaling to regulate the balance between matrix metalloproteinases and tissue inhibitors of metalloproteinase 1 in mice with Crohn’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
7
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
8
|
Ma J, Lv Z, Wang J, Lu J. Relationship Between IL-10 Gene Polymorphism and Spinal Tuberculosis. Med Sci Monit 2019; 25:4901-4906. [PMID: 31264664 PMCID: PMC6618335 DOI: 10.12659/msm.914039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background To investigate the relation between interleukin-10 (IL-10) gene rs1800871 (A/G) polymorphism and spinal tuberculosis. Material/Methods A total of 129 patients with spinal tuberculosis (spinal tuberculosis group) and 106 healthy subjects receiving physical examination (control group) were enrolled in this study. The general data of these subjects were collected, and the C-reactive protein, erythrocyte sedimentation rate (ESR) and baseline hematologic function were examined. The rs1800871 (A/G) polymorphism in IL-10 gene was detected by TaqMan-MGB probe method. Results The C-reactive protein, ESR, white blood cell count, absolute neutrophil count and relative neutrophil count in spinal tuberculosis group were higher than those in control group, while the absolute lymphocyte count and relative lymphocyte count were lower than those in control group (p<0.05). Compared with AA genotype, GG and AG+GG genotypes showed statistically significant difference in distribution frequency (p<0.05), but no significant difference was detected between AG genotype and AA genotype (p>0.05). In spinal tuberculosis group, the frequency of G allele was higher than that of A allele (p<0.01). The C-reactive protein, ESR, white blood cell count and relative neutrophil count in GG genotype were increased compared with those in AG+GG genotype (p<0.05). Conclusions The rs1800871 (A/G) polymorphism in IL-10 gene is related to the susceptibility to spinal tuberculosis. Moreover, carrying G allele increases the risk of spinal tuberculosis.
Collapse
Affiliation(s)
- Jinming Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Zhongzhe Lv
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Jianchuan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Jianmin Lu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
9
|
Filidou E, Valatas V, Drygiannakis I, Arvanitidis K, Vradelis S, Kouklakis G, Kolios G, Bamias G. Cytokine Receptor Profiling in Human Colonic Subepithelial Myofibroblasts: A Differential Effect of Th Polarization-Associated Cytokines in Intestinal Fibrosis. Inflamm Bowel Dis 2018; 24:2224-2241. [PMID: 29860326 DOI: 10.1093/ibd/izy204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Colonic subepithelial myofibroblasts (cSEMFs) are mesenchymal cells with a pivotal role in the pathophysiology of Crohn's disease (CD) fibrosis. Here, we demonstrate for the first time a complete expression mapping of cytokine receptors, implicated in inflammatory bowel diseases, in primary human cSEMFs and how pro-inflammatory cytokines regulate this expression. Furthermore, we show the effect of Th1-, Th2-, Th17- and Treg-related cytokines on a fibrosis-related phenotype of cSEMFs. METHODS Colonic subepithelial myofibroblasts were isolated from healthy individuals' colonic biopsies. Interleukin (IL)-1α- and/or tumor necrosis factor (TNF)-α-induced mRNA and protein expression of cytokine receptors was assayed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence, respectively. Th-related cytokine effects on mRNA and protein profibrotic factor expression were analyzed by qRT-PCR and/or colorimetric assays and on the wound-healing capacity of cSEMFs by scratch test. RESULTS In cSEMFs, we observed basal cytokine receptor expression, which was modified by IL-1α and TNF-α. Th1-related cytokines upregulated tissue factor (TF), collagen, fibronectin and matrix metalloproteinase (MMP)-1 and downregulated α-smooth muscle actin (α-SMA), MMP-9, and wound healing rate. Th2-related cytokines upregulated collagen, TF, α-SMA, MMP-1, and wound healing rate and downregulated fibronectin and MMP-9. IL-17 and IL-23 upregulated fibronectin, and IL-22 downregulated TF. IL-17 and IL-22 decreased wound healing rate. Similar to TGF-β, IL-23 upregulated MMP-1, tissue inhibitor of metalloproteinases-1, collagen expression, and wound healing rates. CONCLUSIONS Our results suggest that cSEMFs have a central role in inflammation and fibrosis, as they express a great variety of Th-related cytokine receptors, making them responsive to pro-inflammatory cytokines, abundant in the inflamed mucosa of CD patients.
Collapse
Affiliation(s)
- Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Vasilis Valatas
- Laboratory of Gastroenterology, University of Crete, Heraklion, Greece
| | | | | | - Stergios Vradelis
- 2nd Department of Internal Medicine of University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Kouklakis
- 1st Department of Internal Medicine of University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| |
Collapse
|
10
|
Interleukin 6 and 10 Serum Levels and Genetic Polymorphisms in Children with Down Syndrome. Mediators Inflamm 2018; 2018:6539548. [PMID: 30186038 PMCID: PMC6116409 DOI: 10.1155/2018/6539548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022] Open
Abstract
Immunological impairment is a condition that is often observed in individuals with Down syndrome (DS). The immune response is modulated by pro- and anti-inflammatory cytokines whose expressions could be influenced by genetic polymorphisms. The present study was aimed at evaluating the frequencies of -174G>C, -572G>C, and -597G>A polymorphisms in the interleukin 6 (IL-6) gene and -592C>A, -1082A>G, and -819C>T polymorphisms in the IL-10 gene and the IL-6 and IL-10 serum levels in healthy individuals with and without DS. The authors also aimed to investigate the impact of the genotypes on the interleukin concentrations. The genetic polymorphisms were investigated in 200 DS individuals and 200 controls without DS. The serum measurement of IL-6 and IL-10 was performed in a subgroup (54 cases and 54 controls) by enzyme-linked immunosorbent assay (ELISA). The frequencies of the polymorphisms and haplotypes evaluated were not different between individuals with and without DS. IL-10 concentration was higher in DS children but was not influenced by IL-10 gene polymorphisms. IL-6 genotypes had no influence on IL-6 serum levels. The IL-10 serum levels are increased in DS individuals, but IL-10 polymorphisms are not the main factors that influence the IL-10 expression in DS.
Collapse
|
11
|
Lian L, Huang Q, Zhang L, Qin H, He X, He X, Ke J, Xie M, Lan P. Anti-fibrogenic Potential of Mesenchymal Stromal Cells in Treating Fibrosis in Crohn's Disease. Dig Dis Sci 2018; 63:1821-1834. [PMID: 29704139 DOI: 10.1007/s10620-018-5082-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal fibrosis is a major complication of CD and may result in stricture formation leading to intestinal obstruction. MSCs play multiple roles in active CD and fibrosis-associated diseases. AIMS This study was designed to investigate the role of MSCs in CD-associated intestinal fibrosis. METHODS Intestinal fibrosis was induced over 7 weeks of enema with increasing doses of TNBS and assessed by Masson's trichrome staining. Transcriptome sequencing and gene set enrichment analysis were conducted to reveal the transcriptome changes among groups at the mRNA level. Immunofluorescence assays were used to validate the role of EMT in intestinal fibrosis. Quantitative real-time PCR and immunohistochemistry analyses were performed to clarify the association between the anti-fibrogenic properties of MSCs and the immune microenvironment. Western blotting was used to verify the potential signaling pathways. RESULTS Fibrotic tissue accumulation and inflammatory cell infiltration were detected in the colon tissue after TNBS induction treatment. Prophylactic MSCs treatment inhibited colon shortening, while therapeutic treatment decreased colon weight. Prophylactic treatment with MSCs inhibited the accumulation of fibrotic tissue, the expression of fibrotic proteins and EMT. Therapeutic MSCs treatment reversed the established intestinal fibrosis and reduced EMT. The secretion of the fibrogenic factors IL-1beta, IL-6 and IL-13 was down-regulated after both MSCs treatment approaches, while IL-10, an anti-fibrogenic factor, was up-regulated. Both MSCs therapies inhibited the expression of TGF-beta and the phosphorylation of Smad2 and Smad3 after TNBS induction. CONCLUSION MSCs exert anti-fibrogenic activity against CD-associated fibrosis by regulating the inflammatory environment, inhibiting the TGF-beta/Smad signaling pathway and ameliorating EMT.
Collapse
Affiliation(s)
- Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qunsheng Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longjuan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huabo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General and Pediatric Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Zhang F, Fan D, Mo XN. Prohibitin and the extracellular matrix are upregulated in murine alveolar epithelial cells with LPS‑induced acute injury. Mol Med Rep 2018; 17:7769-7773. [PMID: 29620269 DOI: 10.3892/mmr.2018.8808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/23/2017] [Indexed: 11/05/2022] Open
Abstract
Inflammation of epithelial and endothelial cells accelerates the progress of acute lung injury (ALI), and pulmonary fibrosis is the leading cause of mortality in patients with acute respiratory distress syndrome. Interleukin‑6 (IL‑6) is a pleiotropic cytokine implicated in the pathogenesis of a number of immune‑mediated disorders, and is involved in pulmonary fibrosis. Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions, including proliferation, apoptosis, tumor suppression, transcription and mitochondrial protein folding. PHB was identified to be associated with a variety of pulmonary diseases, including pulmonary fibrosis. Based on the lipopolysaccharide (LPS)‑induced cell model of ALI, the present study examined the expression of PHB and the extracellular matrix (ECM) in the process of pulmonary inflammation. MLE‑12 cells were divided into 2 groups: The control group was administered sterile PBS; the treatment group was administered 500 ng/ml LPS for 12 h. The mRNA expression of IL‑6 in the treatment group was significantly upregulated compared with the control group (P<0.05). The protein expression of IL‑6 in the treatment group was markedly increased compared with the control group (P<0.05). ECM components, including collagen‑IV and fibronectin, in the treatment group were markedly increased when compared with the control group (P<0.05). The mRNA and protein expression levels of PHB1 and PHB2 were significantly upregulated following treatment with LPS (both P<0.05). The present study identified that PHB and ECM component levels increased in the LPS‑induced ALI cell model, and further investigations may be performed to verify the detailed mechanism.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Neng Mo
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
13
|
Satheesh Kumar MK, Nair S, Mony U, Kalingavarman S, Venkat R, Sivanarayanan TB, Unni AKK, Rajeshkannan R, Anandakuttan A, Radhakrishnan S, Menon KN. Significance of elevated Prohibitin 1 levels in Multiple Sclerosis patients lymphocytes towards the assessment of subclinical disease activity and its role in the central nervous system pathology of disease. Int J Biol Macromol 2017; 110:573-581. [PMID: 29242126 DOI: 10.1016/j.ijbiomac.2017.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/26/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune-neurodegenerative disorder managed therapeutically by modulating lymphocytes activity which has potential in disease management. Prohibitin 1(PHB) that controls the reactive oxygen species (ROS) and present on the activated lymphocytes have significance in the therapy of MS as esters of fumaric acid that regulates ROS is in phase II/III clinical trials. Thus, we evaluated the expression levels of PHB1 in experimental autoimmune encephalomyelitis (EAE), the animal model of MS and on MS patient's lymphocytes. PHB levels in brain tissue of EAE animals were determined by immunoblotting and on blood lymphocytes from MS relapse, Remission, Optic Neuritis, Neurological controls and Healthy volunteers by FACS using anti-PHB and anti-CD45 antibodies. We observed significant elevation of PHB in EAE brains (91.0 ± 17.59%) vs controls (29.8 ± 12.9%) (p = 0.01) and on lymphocytes of MS patients in acute (73.5 ± 11.20%) or relapsing (69.3 ± 17.33%) phase compared to remission (45.9 ± 8.08%) [p = 0.034 acute vs remission; p = 0.004 relapse vs remission]. Up regulation of PHB in relapsing vs remission MS patients imply the potential use of PHB to clinically evaluate subclinical disease status towards prognosis of an oncoming relapse. Elevated PHB levels in EAE brains signify the role of PHB in regulating ROS and implies PHB's role in oxidative stress.
Collapse
Affiliation(s)
| | - Sreepriya Nair
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ullas Mony
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sugavanan Kalingavarman
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ramaswamynathan Venkat
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Ramiah Rajeshkannan
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Krishnakumar N Menon
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
14
|
Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy. Oncotarget 2016; 7:66-80. [PMID: 26623724 PMCID: PMC4807983 DOI: 10.18632/oncotarget.6384] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal–regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM.
Collapse
|
15
|
Han J, Yu C, Souza RF, Theiss AL. Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal 2014; 26:2086-95. [PMID: 24975845 DOI: 10.1016/j.cellsig.2014.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction in intestinal epithelial cells (IEC) is thought to precede the onset of inflammatory bowel diseases (IBD). Expression of Prohibitin 1 (PHB), a mitochondrial protein required for optimal electron transport chain (ETC) activity, is decreased in mucosal biopsies during active and inactive IBD. In addition to its activities as a transcription factor, Signal Transducer and Activator of Transcription 3 (Stat3) resides in the mitochondria of cells where phosphorylation at S727 is required for optimal ETC activity and protects against stress-induced mitochondrial dysfunction. Here, we show that PHB overexpression protects against mitochondrial stress and apoptosis of cultured IECs induced by TNFα, which is a pro-inflammatory cytokine involved in IBD pathogenesis. Expression of pS727-Stat3 dominant negative eliminates protection by PHB against TNFα-induced mitochondrial stress and apoptosis. PHB interacts with pS727-Stat3 in the mitochondria of cultured IECs and in colonic epithelium from wild-type mice. Our data suggest a protective role of PHB that is dependent on pS727-Stat3 to prevent mitochondrial dysfunction in IECs. Reduced levels of PHB during IBD may be an underlying factor promoting mitochondrial dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
- Jie Han
- Department of Internal Medicine, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Chunhua Yu
- Department of Medicine, Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rhonda F Souza
- Department of Medicine, Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arianne L Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States.
| |
Collapse
|
16
|
Zhang L, Cheng J, Fan XM. MicroRNAs: New therapeutic targets for intestinal barrier dysfunction. World J Gastroenterol 2014; 20:5818-5825. [PMID: 24914342 PMCID: PMC4024791 DOI: 10.3748/wjg.v20.i19.5818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Defects in intestinal barrier function characterized by an increase in intestinal permeability contribute to intestinal inflammation. Growing evidence has shown that an increase in intestinal permeability has a pathogenic role in diseases such as inflammatory bowel disease (IBD) and celiac disease, and functional bowel disorders such as irritable bowel syndrome. Therefore, clarification of the inflammatory responses, the defense pathway and the corresponding regulatory system is essential and may lead to the development of new therapies. MicroRNAs (miRNAs) are small (19-22 nt) noncoding RNA molecules that regulate genes at the post-transcriptional level by base-pairing to specific messenger RNAs for degradation to repress translation. Recent studies suggested that miRNAs are important in the immune response and mediate a critical role in multiple immune response-related disorders. Based on these discoveries, attention has been focused on understanding the role of miRNAs in regulating intestinal barrier dysfunction, especially in IBD. Here, we provide a review of the most recent state-of-the-art research on miRNAs in intestinal barrier dysfunction.
Collapse
|
17
|
Latorre E, Matheus N, Layunta E, Alcalde AI, Mesonero JE. IL-10 counteracts proinflammatory mediator evoked oxidative stress in Caco-2 cells. Mediators Inflamm 2014; 2014:982639. [PMID: 25147442 PMCID: PMC4132333 DOI: 10.1155/2014/982639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is thought to play a key role in the development of intestinal damage in intestinal inflammatory diseases. Several molecules are involved in the intestinal inflammation, either as pro- or anti-inflammatory factors; however, their effects on intestinal oxidative stress seem to be controversial. This work analyzes the contribution of pro- and anti-inflammatory molecules to the balance of oxidative damage in intestinal epithelial cells, as well as their effects on cellular antioxidant enzyme activity. With this purpose, the lipid and protein oxidation, together with the activity of catalase, superoxide dismutase, and glutathione peroxidase, were determined in the Caco-2 cells treated with serotonin, adenosine, melatonin, and TNFα, as proinflammatory factors, and IL-10, as an anti-inflammatory cytokine. The results have shown that all the proinflammatory factors assayed increased oxidative damage. In addition, these factors also inhibited the activity of antioxidant enzymes in the cells, except melatonin. In contrast, IL-10 did not alter these parameters but was able to reduce the prooxidant effects yielded by serotonin, adenosine, melatonin, or TNFα, in part by restoring the antioxidant enzymes activities. In summary, proinflammatory factors may induce oxidative damage in intestinal epithelial cells, whereas IL-10 seems to be able to restore the altered redox equilibrium in Caco-2 cells.
Collapse
Affiliation(s)
- Eva Latorre
- 1Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Nyurky Matheus
- 1Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- 2Department of Basic Sciences, Faculty of Veterinary Sciences, University of Centroccidental Lisandro Alvarado, Núcleo Hector Ochoa Zuleta, Tarabana 3023, Lara, Venezuela
| | - Elena Layunta
- 1Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Isabel Alcalde
- 1Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - José Emilio Mesonero
- 1Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- *José Emilio Mesonero:
| |
Collapse
|
18
|
Cao Y, Xu W, Xiong S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS One 2013; 8:e74955. [PMID: 24023968 PMCID: PMC3762771 DOI: 10.1371/journal.pone.0074955] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022] Open
Abstract
Background Cardiac fibrogenesis in the late stage of viral myocarditis causing contractile dysfunction and ventricular dilatation, is a major pathogenic factor for the progression of myocarditis to serious cardiovascular diseases including dilated cardiomyopathy (DCM) and congestive heart failure (HF). Recent studies indicate that regulatory T cells (Tregs) are involved in the fibrotic process of liver and lung fibosis. However, the role of Tregs in the development of viral myocarditis-caused cardiac fibrosis and their therapeutic potential remains unclear. Methodology/Principal Findings Myocardial fibrosis was induced in BALB/c mice by intraperitoneal injection of Coxsackievirus B3 (CVB3) assessed by picrosirius red staining and detection of expression levels of collagen I, matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Myocardial Treg frequency was down-regulated during the course of viral myocarditis and a negative correlation with the severity of cardiac fibrosis was found. To explore the role of Tregs in CVB-induced cardiac fibrosis, Treg was in vivo depleted by injecting anti-CD25 mAb which resulted in aggravation of cardiac fibrosis. In consistent with that, after adoptive transfer of isolated Tregs into mice, significant amelioration of CVB3-induced cardiac fibrosis was confirmed. Interleukin-10 (IL-10) neutralizing antibodies were used in vivo and in vitro to explore the molecular mechanism of the therapeutic effect of Treg. It was found that administration of anti-IL-10 mAb after Treg transfer abrogated Treg’s treating effect and the inhibition of Treg on collagen production by cardiac fibroblasts was mediated mainly through IL-10. Conclusion/Significance Our data suggested that Tregs have a protective role in the fibrotic process of CVB3-induced cardiac fibrosis via secreting IL-10 and might provide an alternative option for the future treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yanxia Cao
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P. R. China
- * E-mail: (WX); (SX)
| | - Sidong Xiong
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P. R. China
- * E-mail: (WX); (SX)
| |
Collapse
|