1
|
Roche-Lima A, Rosado-Quiñones AM, Feliu-Maldonado RA, Figueroa-Gispert MDM, Díaz-Rivera J, Díaz-González RG, Carrasquillo-Carrion K, Nieves BG, Colón-Lorenzo EE, Serrano AE. Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool. Acta Parasitol 2024; 69:415-425. [PMID: 38165555 PMCID: PMC11001753 DOI: 10.1007/s11686-023-00765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/27/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Antimalarial drug resistance is a global public health problem that leads to treatment failure. Synergistic drug combinations can improve treatment outcomes and delay the development of drug resistance. Here, we describe the implementation of a freely available computational tool, Machine Learning Synergy Predictor (MLSyPred©), to predict potential synergy in antimalarial drug combinations. METHODS The MLSyPred© synergy prediction method extracts molecular fingerprints from the drugs' biochemical structures to use as features and also cleans and prepares the raw data. Five machine learning algorithms (Logistic Regression, Random Forest, Support vector machine, Ada Boost, and Gradient Boost) were implemented to build prediction models. Implementation and application of the MLSyPred© tool were tested using datasets from 1540 combinations of 79 drugs and compounds biologically evaluated in pairs for three strains of Plasmodium falciparum (3D7, HB3, and Dd2). RESULTS The best prediction models were obtained using Logistic Regression for antimalarials with the strains Dd2 and HB3 (0.81 and 0.70 AUC, respectively) and Random Forest for antimalarials with 3D7 (0.69 AUC). The MLSyPred© tool yielded 45% precision for synergistically predicted antimalarial drug combinations that were annotated and biologically validated, thus confirming the functionality and applicability of the tool. CONCLUSION The MLSyPred© tool is freely available and represents a promising strategy for discovering potential synergistic drug combinations for further development as novel antimalarial therapies.
Collapse
Affiliation(s)
- Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Angélica M Rosado-Quiñones
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Roberto A Feliu-Maldonado
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - María Del Mar Figueroa-Gispert
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jennifer Díaz-Rivera
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Roberto G Díaz-González
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Kelvin Carrasquillo-Carrion
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Brenda G Nieves
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Emilee E Colón-Lorenzo
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Adelfa E Serrano
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
2
|
Peng Z, Ding Y, Zhang P, Lv X, Li Z, Zhou X, Huang S. Artificial Intelligence Application for Anti-tumor Drug Synergy Prediction. Curr Med Chem 2024; 31:6572-6585. [PMID: 39420717 DOI: 10.2174/0109298673290777240301071513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 10/19/2024]
Abstract
Currently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti- tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Yanling Ding
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Pengfei Zhang
- Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaolan Lv
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Zepeng Li
- Department of Infectious Disease, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Yang L, Zhang YH, Huang F, Li Z, Huang T, Cai YD. Identification of protein–protein interaction associated functions based on gene ontology and KEGG pathway. Front Genet 2022; 13:1011659. [PMID: 36171880 PMCID: PMC9511048 DOI: 10.3389/fgene.2022.1011659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are extremely important for gaining mechanistic insights into the functional organization of the proteome. The resolution of PPI functions can help in the identification of novel diagnostic and therapeutic targets with medical utility, thus facilitating the development of new medications. However, the traditional methods for resolving PPI functions are mainly experimental methods, such as co-immunoprecipitation, pull-down assays, cross-linking, label transfer, and far-Western blot analysis, that are not only expensive but also time-consuming. In this study, we constructed an integrated feature selection scheme for the large-scale selection of the relevant functions of PPIs by using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations of PPI participants. First, we encoded the proteins in each PPI with their gene ontologies and KEGG pathways. Then, the encoded protein features were refined as features of both positive and negative PPIs. Subsequently, Boruta was used for the initial filtering of features to obtain 5684 features. Three feature ranking algorithms, namely, least absolute shrinkage and selection operator, light gradient boosting machine, and max-relevance and min-redundancy, were applied to evaluate feature importance. Finally, the top-ranked features derived from multiple datasets were comprehensively evaluated, and the intersection of results mined by three feature ranking algorithms was taken to identify the features with high correlation with PPIs. Some functional terms were identified in our study, including cytokine–cytokine receptor interaction (hsa04060), intrinsic component of membrane (GO:0031224), and protein-binding biological process (GO:0005515). Our newly proposed integrated computational approach offers a novel perspective of the large-scale mining of biological functions linked to PPI.
Collapse
Affiliation(s)
- Lili Yang
- Measurement Biotechnique Research Center, School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - ZhanDong Li
- Measurement Biotechnique Research Center, School of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
4
|
Kuru HI, Tastan O, Cicek AE. MatchMaker: A Deep Learning Framework for Drug Synergy Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2334-2344. [PMID: 34086576 DOI: 10.1109/tcbb.2021.3086702] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to ∼ 15% correlation and ∼ 33% mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker.
Collapse
|
5
|
Zhang M, Cai H, Du Y, Wang Y, Gong J, Xu J, Liu X. Enhancing the Therapeutic Efficacy of Gefitinib in Human Non-Small-Cell Lung Cancer through Drug Combination. Mol Pharm 2021; 18:1397-1407. [PMID: 33471533 DOI: 10.1021/acs.molpharmaceut.0c01203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between tumor cells and the tumor microenvironment (TME) significantly influences tumorigenesis, so TME-targeted therapy has attracted widespread attention. We have previously demonstrated that the combination of dipyridamole, bestatin, and dexamethasone (DBD mix, DBDx) is effective against heterogeneous human pancreatic cancer and hepatocellular carcinoma in mouse xenograft models. To further expand the therapeutic potential of this drug combination, herein, we investigated the antitumor efficacy and the underlying mechanism of DBDx and the combination of DBDx and gefitinib in different mouse xenograft models of human non-small-cell lung cancer (NSCLC). Three human cancer cell lines H460, PG, and A431 were used to determine the apoptosis and growth inhibition induced by DBDx, gefitinib, and their combinations. Changes in epidermal growth factor receptor (EGFR) signaling pathway-related proteins were analyzed following treatment using western blotting. In vitro, DBDx strongly inhibited the proliferation of tumor cells, whereas the combined treatment exhibited a significant synergistic effect. Compared with DBDx, the combination treatment further induced apoptosis and downregulated the expression of molecules associated with EGFR signaling pathway. In vivo, compared with DBDx alone, the combination treatment distinctly inhibited tumor growth in mouse xenograft models of human NSCLC. Overall, our results indicate that the combination of DBDx and gefitinib in the treatment of human NSCLC is very promising, which warrants further translational studies.
Collapse
Affiliation(s)
- Mengran Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| | - Hao Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| | - Yue Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuexuan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| | - Jianhua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantanxili, Beijing 100050, China
| |
Collapse
|
6
|
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun 2020; 11:6136. [PMID: 33262326 PMCID: PMC7708835 DOI: 10.1038/s41467-020-19950-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications. Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.
Collapse
|
7
|
Ferdousi R, Jamali AA, Safdari R. Identification and ranking of important bio-elements in drug-drug interaction by Market Basket Analysis. ACTA ACUST UNITED AC 2019; 10:97-104. [PMID: 32363153 PMCID: PMC7186546 DOI: 10.34172/bi.2020.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Drug-drug interactions (DDIs) are the main causes of the adverse drug reactions and the nature of the functional and molecular complexity of drugs behavior in the human body make DDIs hard to prevent and threat. With the aid of new technologies derived from mathematical and computational science, the DDI problems can be addressed with a minimum cost and effort. The Market Basket Analysis (MBA) is known as a powerful method for the identification of co-occurrence of matters for the discovery of patterns and the frequency of the elements involved. Methods: In this research, we used the MBA method to identify important bio-elements in the occurrence of DDIs. For this, we collected all known DDIs from DrugBank. Then, the obtained data were analyzed by MBA method. All drug-enzyme, drug-carrier, drug-transporter and drug-target associations were investigated. The extracted rules were evaluated in terms of the confidence and support to determine the importance of the extracted bio-elements. Results: The analyses of over 45000 known DDIs revealed over 300 important rules from 22 085 drug interactions that can be used in the identification of DDIs. Further, the cytochrome P450 (CYP) enzyme family was the most frequent shared bio-element. The extracted rules from MBA were applied over 2000000 unknown drug pairs (obtained from FDA approved drugs list), which resulted in the identification of over 200000 potential DDIs. Conclusion: The discovery of the underlying mechanisms behind the DDI phenomena can help predict and prevent the inadvertent occurrence of DDIs. Ranking of the extracted rules based on their association can be a supportive tool to predict the outcome of unknown DDIs.
Collapse
Affiliation(s)
- Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Jamali
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reza Safdari
- Department of Health Care Management, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Analysis of Protein-Protein Functional Associations by Using Gene Ontology and KEGG Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4963289. [PMID: 31396531 PMCID: PMC6668538 DOI: 10.1155/2019/4963289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Protein–protein interaction (PPI) plays an extremely remarkable role in the growth, reproduction, and metabolism of all lives. A thorough investigation of PPI can uncover the mechanism of how proteins express their functions. In this study, we used gene ontology (GO) terms and biological pathways to study an extended version of PPI (protein–protein functional associations) and subsequently identify some essential GO terms and pathways that can indicate the difference between two proteins with and without functional associations. The protein–protein functional associations validated by experiments were retrieved from STRING, a well-known database on collected associations between proteins from multiple sources, and they were termed as positive samples. The negative samples were constructed by randomly pairing two proteins. Each sample was represented by several features based on GO and KEGG pathway information of two proteins. Then, the mutual information was adopted to evaluate the importance of all features and some important ones could be accessed, from which a number of essential GO terms or KEGG pathways were identified. The final analysis of some important GO terms and one KEGG pathway can partly uncover the difference between proteins with and without functional associations.
Collapse
|
9
|
Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform 2019; 19:1382-1399. [PMID: 28981626 PMCID: PMC6402530 DOI: 10.1093/bib/bbx065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic–pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Zhong-shan School of Medicine, Sun Yat-Sen University
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University
| |
Collapse
|
10
|
Zhang C, Yan G. Synergistic drug combinations prediction by integrating pharmacological data. Synth Syst Biotechnol 2019; 4:67-72. [PMID: 30820478 PMCID: PMC6370570 DOI: 10.1016/j.synbio.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
There is compelling evidence that synergistic drug combinations have become promising strategies for combating complex diseases, and they have evident predominance comparing to traditional one drug - one disease approaches. In this paper, we develop a computational method, namely SyFFM, that takes pharmacological data into consideration and applies field-aware factorization machines to analyze and predict potential synergistic drug combinations. Firstly, features of drug pairs are constructed based on associations between drugs and target, and enzymes, and indication areas. Then, the synergistic scores of drug combinations are obtained by implementing field-aware factorization machines on latent vector space of these features. Finally, synergistic combinations can be predicted by introducing a threshold. We applied SyFFM to predict pairwise synergistic combinations and three-drug synergistic combinations, and the performance is good in terms of cross-validation. Besides, more than 90% combinations of the top ranked predictions are proved by literature and the analysis of parameters in model shows that our method can help to investigate and explain synergistic mechanisms underlying combinatorial therapy.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guiying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
11
|
Ding P, Yin R, Luo J, Kwoh CK. Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge. IEEE J Biomed Health Inform 2018; 23:1336-1345. [PMID: 29994408 DOI: 10.1109/jbhi.2018.2852274] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combinatorial therapy may reduce drug side effects and improve drug efficacy, making combination therapy a promising strategy to treat complex diseases. However, in the existing computational methods, the natural properties and network knowledge of drugs have not been adequately and simultaneously considered, making it difficult to identify effective drug combinations. Computational methods that incorporate multiple sources of information (biological, chemical, pharmacological, and network knowledge) offer more opportunities to screen synergistic drug combinations. Therefore, we developed a novel Ensemble Prediction framework of Synergistic Drug Combinations (EPSDC) to accurately and efficiently predict drug combinations by integrating information from multiple-sources. EPSDC constructs feature vector of drug pair by concatenating different types of drug similarities, and then uses these groups in a feature-based base predictor. Next, transductive learning is applied on heterogeneous drug-target networks to achieve a network-based score for the drug pair. Finally, two types of ensemble rules are introduced to combine the feature-based score and the network-based score, and then potential drug combinations are prioritized. To demonstrate the effect of the ensemble rule, comprehensive experiments were conducted to compare single models and ensemble models. The experimental results indicated that our method outperformed the state-of-the-art method in five-fold cross validation and de novo prediction tests on the two benchmark datasets. We further analyzed the effect of maximum length of the meta-path and the impacts of different types of features. Moreover, the practical usefulness of our method was confirmed in the predicted novel drug combinations. The source code of EPSDC is available at https://github.com/KDDing/EPSDC.
Collapse
|
12
|
Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm. Int J Mol Sci 2018; 19:ijms19020467. [PMID: 29401735 PMCID: PMC5855689 DOI: 10.3390/ijms19020467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.
Collapse
|
13
|
Shi JY, Li JX, Gao K, Lei P, Yiu SM. Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features. BMC Bioinformatics 2017; 18:409. [PMID: 29072137 PMCID: PMC5657064 DOI: 10.1186/s12859-017-1818-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Background Drug Combination is one of the effective approaches for treating complex diseases. However, determining combinative drug pairs in clinical trials is still costly. Thus, computational approaches are used to identify potential drug pairs in advance. Existing computational approaches have the following shortcomings: (i) the lack of an effective integration of heterogeneous features leads to a time-consuming training and even results in an over-fitted classifier; and (ii) the narrow consideration of predicting potential drug combinations only among known drugs having known combinations cannot meet the demand of realistic screenings, which pay more attention to potential combinative pairs among newly-coming drugs that have no approved combination with other drugs at all. Results In this paper, to tackle the above two problems, we propose a novel drug-driven approach for predicting potential combinative pairs on a large scale. We define four new features based on heterogeneous data and design an efficient fusion scheme to integrate these feature. Moreover importantly, we elaborate appropriate cross-validations towards realistic screening scenarios of drug combinations involving both known drugs and new drugs. In addition, we perform an extra investigation to show how each kind of heterogeneous features is related to combinative drug pairs. The investigation inspires the design of our approach. Experiments on real data demonstrate the effectiveness of our fusion scheme for integrating heterogeneous features and its predicting power in three scenarios of realistic screening. In terms of both AUC and AUPR, the prediction among known drugs achieves 0.954 and 0.821, that between known drugs and new drugs achieves 0.909 and 0.635, and that among new drugs achieves 0.809 and 0.592 respectively. Conclusions Our approach provides not only an effective tool to integrate heterogeneous features but also the first tool to predict potential combinative pairs among new drugs.
Collapse
Affiliation(s)
- Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Jia-Xin Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Gao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Peng Lei
- Department of Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Siu-Ming Yiu
- Department of Computer Science, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Wooden B, Goossens N, Hoshida Y, Friedman SL. Using Big Data to Discover Diagnostics and Therapeutics for Gastrointestinal and Liver Diseases. Gastroenterology 2017; 152:53-67.e3. [PMID: 27773806 PMCID: PMC5193106 DOI: 10.1053/j.gastro.2016.09.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Technologies such as genome sequencing, gene expression profiling, proteomic and metabolomic analyses, electronic medical records, and patient-reported health information have produced large amounts of data from various populations, cell types, and disorders (big data). However, these data must be integrated and analyzed if they are to produce models or concepts about physiological function or mechanisms of pathogenesis. Many of these data are available to the public, allowing researchers anywhere to search for markers of specific biological processes or therapeutic targets for specific diseases or patient types. We review recent advances in the fields of computational and systems biology and highlight opportunities for researchers to use big data sets in the fields of gastroenterology and hepatology to complement traditional means of diagnostic and therapeutic discovery.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology and Hepatology, Department of Medical Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Chen D, Liu X, Yang Y, Yang H, Lu P. Systematic synergy modeling: understanding drug synergy from a systems biology perspective. BMC SYSTEMS BIOLOGY 2015; 9:56. [PMID: 26377814 PMCID: PMC4574089 DOI: 10.1186/s12918-015-0202-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose–response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and “omic”-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.
Collapse
Affiliation(s)
- Di Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xi Liu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiping Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Peng Lu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
16
|
Chen L, Chu C, Lu J, Kong X, Huang T, Cai YD. Gene Ontology and KEGG Pathway Enrichment Analysis of a Drug Target-Based Classification System. PLoS One 2015; 10:e0126492. [PMID: 25951454 PMCID: PMC4423955 DOI: 10.1371/journal.pone.0126492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/02/2015] [Indexed: 12/22/2022] Open
Abstract
Drug-target interaction (DTI) is a key aspect in pharmaceutical research. With the ever-increasing new drug data resources, computational approaches have emerged as powerful and labor-saving tools in predicting new DTIs. However, so far, most of these predictions have been based on structural similarities rather than biological relevance. In this study, we proposed for the first time a "GO and KEGG enrichment score" method to represent a certain category of drug molecules by further classification and interpretation of the DTI database. A benchmark dataset consisting of 2,015 drugs that are assigned to nine categories ((1) G protein-coupled receptors, (2) cytokine receptors, (3) nuclear receptors, (4) ion channels, (5) transporters, (6) enzymes, (7) protein kinases, (8) cellular antigens and (9) pathogens) was constructed by collecting data from KEGG. We analyzed each category and each drug for its contribution in GO terms and KEGG pathways using the popular feature selection "minimum redundancy maximum relevance (mRMR)" method, and key GO terms and KEGG pathways were extracted. Our analysis revealed the top enriched GO terms and KEGG pathways of each drug category, which were highly enriched in the literature and clinical trials. Our results provide for the first time the biological relevance among drugs, targets and biological functions, which serves as a new basis for future DTI predictions.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jing Lu
- Department of Medicinal Chemistry, School of Pharmacy, Yantai University, Shandong, Yantai, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
|
18
|
A hadoop-based method to predict potential effective drug combination. BIOMED RESEARCH INTERNATIONAL 2014; 2014:196858. [PMID: 25147789 PMCID: PMC4134802 DOI: 10.1155/2014/196858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/05/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022]
Abstract
Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request.
Collapse
|
19
|
Identifying gastric cancer related genes using the shortest path algorithm and protein-protein interaction network. BIOMED RESEARCH INTERNATIONAL 2014; 2014:371397. [PMID: 24729971 PMCID: PMC3963223 DOI: 10.1155/2014/371397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/03/2014] [Indexed: 01/07/2023]
Abstract
Gastric cancer, as one of the leading causes of cancer related deaths worldwide, causes about 800,000 deaths per year. Up to now, the mechanism underlying this disease is still not totally uncovered. Identification of related genes of this disease is an important step which can help to understand the mechanism underlying this disease, thereby designing effective treatments. In this study, some novel gastric cancer related genes were discovered based on the knowledge of known gastric cancer related ones. These genes were searched by applying the shortest path algorithm in protein-protein interaction network. The analysis results suggest that some of them are indeed involved in the biological process of gastric cancer, which indicates that they are the actual gastric cancer related genes with high probability. It is hopeful that the findings in this study may help promote the study of this disease and the methods can provide new insights to study various diseases.
Collapse
|