1
|
Oja SS, Saransaari P. Taurine and the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:325-331. [DOI: 10.1007/978-3-030-93337-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Zhang W, Lan Z, Li K, Liu C, Jiang P, Lu W. Inhibitory role of taurine in the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2020; 299:113613. [PMID: 32950586 DOI: 10.1016/j.ygcen.2020.113613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Taurine plays role in neural development and physiological functions such as endocrine regulation in the central nervous system (CNS), and it is one of the most abundant free amino acid there. We investigated its potential effect as a neurotransmitter in the group of neuroendocrine Dahlgren cells at flounder Paralichthys olivaceus caudal neurosecretory system (CNSS). The application of taurine in vitro led to a reduction in electrical activity of Dahlgren cells, followed by a rise in the number of silent cells, at the same time the frequency of all three activity patterns (tonic, phasic, bursting) in Dahlgren cells was reduced. Both strychnine (a glycine receptor antagonist) and bicuculline (a GABAA receptor antagonist) can block the response to taurine separately. Transcriptome sequencing analysis showed the existence of glycine receptor (GlyR) and GABAA receptor (GABAAR) in the flounder CNSS, and the GlyR, GABAAR, and Cl- channel mRNA expression were significantly raised after taurine superfusion according to quantitative RT-PCR results. These data indicate that taurine may mediate Dahlgren cell population of CNSS activity in vivo through GlyR and GABAAR, thereby, regulating stress-response.
Collapse
Affiliation(s)
- Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Kunyu Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
3
|
Nguyen HTT, Jang SH, Park SJ, Cho DH, Han SK. Potentiation of the Glycine Response by Bisphenol A, an Endocrine Disrupter, on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. Chem Res Toxicol 2020; 33:782-788. [PMID: 31997638 DOI: 10.1021/acs.chemrestox.9b00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
4
|
Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM. Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress. Amino Acids 2019; 51:641-646. [PMID: 30656415 DOI: 10.1007/s00726-019-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to evaluate effect of TAU on NMDA-induced changes in retinal redox status, retinal cell apoptosis and retinal morphology in Sprague-Dawley rats. Taurine was injected intravitreally as pre-, co- or post-treatment with NMDA and 7 days post-treatment retinae were processed for estimation of oxidative stress, retinal morphology using H&E staining and retinal cell apoptosis using TUNEL staining. Treatment with TAU, particularly pre-treatment, significantly increased retinal glutathione, superoxide dismutase and catalase levels compared to NMDA-treated rats; whereas, the levels of malondialdehyde reduced significantly. Reduction in retinal oxidative stress in TAU pre-treated group was associated with significantly greater fractional thickness of ganglion cell layer within inner retina and retinal cell density in inner retina. TUNEL staining showed significantly reduced apoptotic cell count in TAU pre-treated group compared to NMDA group. It could be concluded that TAU protects against NMDA-induced retinal injury in rats by reducing retinal oxidative stress.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia.
- I-PPerForM, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia.
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russia
| | - Puneet Agarwal
- Faculty of Medicine, International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Nafeeza Mohd Ismail
- Faculty of Medicine, International Medical University, IMU Clinical School, Seremban, Malaysia
| |
Collapse
|
5
|
Miles AR, Hawrysh PJ, Hossein-Javaheri N, Buck LT. Taurine activates glycine and GABA A receptor currents in anoxia-tolerant painted turtle pyramidal neurons. ACTA ACUST UNITED AC 2018; 221:jeb.181529. [PMID: 30237241 DOI: 10.1242/jeb.181529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022]
Abstract
Unlike anoxia-intolerant mammals, painted turtles can survive extended periods without oxygen. This is partly accomplished by an anoxia-mediated increase in gamma-aminobutyric acid (GABA) release, which activates GABA receptors and mediates spike arrest in turtle neurons via shunting inhibition. Extracellular taurine levels also increase during anoxia; why this occurs is unknown but it is speculated that glycine and/or GABAA/B receptors are involved. Given the general importance of inhibitory neurotransmission in the anoxia-tolerant painted turtle brain, we investigated the function of taurine as an inhibitory neuromodulator in turtle pyramidal neurons. Using whole-cell patch-clamp electrophysiological methods to record from neurons within a cortical brain sheet, we found that taurine depolarized membrane potential by ∼8 mV, increased whole-cell conductance ∼2-fold, and induced an inward current that possessed characteristics similar to GABA- and glycine-evoked currents. These effects were mitigated following glycine receptor antagonism with strychnine and GABAA receptor antagonism with gabazine, bicuculine or picrotoxin, but were unchanged following GABAB or glutamatergic receptor inhibition. These data indicate that a high concentration of taurine in vitro mediates its effects through both glycine and GABAA receptors, and suggests that taurine, in addition to GABA, inhibits neuronal activity during anoxia in the turtle cortex.
Collapse
Affiliation(s)
- Ashley R Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Peter J Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5 .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| |
Collapse
|
6
|
Paulucio D, Terra A, Santos CG, Cagy M, Velasques B, Ribeiro P, da Costa BM, Gongora M, Alvarenga R, Alonso L, Pompeu FAMS. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise. PLoS One 2018. [PMID: 29538445 PMCID: PMC5851630 DOI: 10.1371/journal.pone.0194264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment.
Collapse
Affiliation(s)
- Dailson Paulucio
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of physiology in soccer, Botafogo de Futebol e Regatas, Rio de Janeiro, Brazil
| | - Augusto Terra
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caleb G. Santos
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Army Biology Institute, Brazilian Army, Rua Francisco Manuel, Triagem, Rio de Janeiro, RJ, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Bruno M. da Costa
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Laboratory of Exercise, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Alvarenga
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Alonso
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A. M. S. Pompeu
- Biometrics Laboratory, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate in Physical Education, School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Oh SM, Bhattarai JP, Han SK, Park SJ. Effects of hypotaurine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis in immature mice. Amino Acids 2016; 48:2843-2853. [PMID: 27573934 DOI: 10.1007/s00726-016-2321-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
To understand the action and mechanism of hypotaurine, an immediate precursor of taurine, on orofacial nociceptive processing, we examined the direct effects and receptor types involved in hypotaurine-induced responses using the whole-cell patch clamp technique in the substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) of immature mice. Under the condition of high-chloride pipette solution, hypotaurine elicited inward currents or upward deflections of membrane potential, which increased in a concentration-dependent manner (30-3000 μM) with the EC50 of 663.8 and 337.6 μM, respectively. The responses to 300 µM hypotaurine were reproducible and recovered upon washout. The 300 µM hypotaurine-induced currents were maintained in the presence of TTX, CNQX, and AP5, indicating direct postsynaptic action of hypotaurine on SG neurons. Responses to both low (300 µM) and high (1 or 3 mM) concentrations of hypotaurine were completely and reversibly blocked by the glycine receptor antagonist strychnine (2 µM), but unaffected by the GABAA receptor antagonist gabazine (3 µM) which blocks synaptic GABAA receptors at low concentration. Furthermore, responses to 300 µM hypotaurine and a maximal concentration of glycine (3 mM) were not additive, indicating that hypotaurine and glycine act on the same receptor. Hypotaurine-induced currents were partially antagonized by picrotoxin (50 µM) which blocks homomeric glycine receptors and by bicuculline (10 µM) which is an antagonist of α2 subunit-containing glycine receptors. These results suggest that hypotaurine-induced responses were mediated by glycine receptor activation in the SG neurons and hypotaurine might be used as an effective therapeutics for orofacial pain.
Collapse
Affiliation(s)
- Sun Mi Oh
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
8
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
9
|
Bhattarai JP, Park SJ, Chun SW, Cho DH, Han SK. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons. Neurosci Lett 2015; 608:51-6. [PMID: 26453764 DOI: 10.1016/j.neulet.2015.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/28/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.
Collapse
Affiliation(s)
- Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sang Woo Chun
- Department of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University, 344-2 Shinyong Dong, Iksan 570-749, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonj 561-756, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
10
|
Nguyen HTT, Bhattarai JP, Park SJ, Lee JC, Cho DH, Han SK. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice. J Diabetes Complications 2015; 29:629-36. [PMID: 25891974 DOI: 10.1016/j.jdiacomp.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022]
Abstract
Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong Chae Lee
- Department of Orthodontics, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
11
|
Taurine Enhances Excitability of Mouse Cochlear Neural Stem Cells by Selectively Promoting Differentiation of Glutamatergic Neurons Over GABAergic Neurons. Neurochem Res 2015; 40:924-31. [DOI: 10.1007/s11064-015-1546-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 12/31/2022]
|