1
|
Zhang YF, Lu M. Advances in magnetic induction hyperthermia. Front Bioeng Biotechnol 2024; 12:1432189. [PMID: 39161353 PMCID: PMC11331313 DOI: 10.3389/fbioe.2024.1432189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Magnetic induction hyperthermia (MIH), is a technique that has developed rapidly in recent years in the field of tumor thermotherapy. It implants a magnetic heating medium (millimeter-sized heat seeds, micron-sized magnetic particles and nanometer-sized magnetic fluids, etc.) inside the tumor. The material heats up under the induction of an external alternating magnetic field (100-500 kHz), which causes a high temperature zone to rapidly form in the local biological tissues and induces apoptosis in tumor cells. Magnetic induction hyperthermia has the advantages of high safety, strong targeting, repeatable treatment, and the size of the incision during treatment is negligible compared to surgical resection, and is currently used in clinical treatment. However, the millimeter-scale heat seed heating that is typically used in treatments can result in uneven temperatures within the tissue. Common MIH heating devices are bulky and complex in design, and are not easy for medical staff to get their hands on, which are issues that limit the diffusion of MIH. In this view, this paper will discuss the basic theoretical research on MIH and the progress of MIH-related technologies, with a focus on the latest research and development results and research hotspots of nanoscale ferromagnetic media and magnetic heat therapy devices, as well as the validation results and therapeutic efficacy of the new MIH technology on animal experiments and clinical trials. In this paper, it is found that induction heating using magnetic nanoparticles improves the uniformity of the temperature field, and the magneto-thermal properties of nanoscale ferromagnetic materials are significantly improved. The heating device was miniaturized to simplify the operation steps, while the focusing of the magnetic field was locally enhanced. However, there are fewer studies on the biotoxicity aspects of nanomedicines, and the localized alternating magnetic field uniformity used for heating and the safety of the alternating magnetic field after irradiation of the human body have not been sufficiently discussed. Ultimately, the purpose of this paper is to advance research related to magnetic induction thermotherapy that can be applied in clinical treatment.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
2
|
Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Jesus Perry M, Paula Francisco A, Rodrigues CMP, Manuela Gaspar M. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm 2023; 640:123011. [PMID: 37146952 DOI: 10.1016/j.ijpharm.2023.123011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a ʟ-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 μM) and DTIC (70 μM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Godinho-Santos
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
3
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
4
|
Tamura Y, Ito A, Wakamatsu K, Torigoe T, Honda H, Ito S, Jimbow K. A Sulfur Containing Melanogenesis Substrate, N-Pr-4-S-CAP as a Potential Source for Selective Chemoimmunotherapy of Malignant Melanoma. Int J Mol Sci 2023; 24:ijms24065235. [PMID: 36982309 PMCID: PMC10049105 DOI: 10.3390/ijms24065235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
N-propionyl-4-S-cysteaminylphenol (N-Pr-4-S-CAP) is a substrate for tyrosinase, which is a melanin biosynthesis enzyme and has been shown to be selectively incorporated into melanoma cells. It was found to cause selective cytotoxicity against melanocytes and melanoma cells after selective incorporation, resulting in the induction of anti-melanoma immunity. However, the underlying mechanisms for the induction of anti-melanoma immunity remain unclear. This study aimed to elucidate the cellular mechanism for the induction of anti-melanoma immunity and clarify whether N-Pr-4-S-CAP administration could be a new immunotherapeutic approach against melanoma, including local recurrence and distant metastasis. A T cell depletion assay was used for the identification of the effector cells responsible for N-Pr-4-S-CAP-mediated anti-melanoma immunity. A cross-presentation assay was carried out by using N-Pr-4-S-CAP-treated B16-OVA melanoma-loaded bone marrow-derived dendritic cells (BMDCs) and OVA-specific T cells. Administration of N-Pr-4-S-CAP induced CD8+ T cell-dependent anti-melanoma immunity and inhibited the growth of challenged B16F1 melanoma cells, indicating that the administration of N-Pr-4-S-CAP can be a prophylactic therapy against recurrence and metastasis of melanoma. Moreover, intratumoral injection of N-Pr-4-S-CAP in combination with BMDCs augmented the tumor growth inhibition when compared with administration of N-Pr-4-S-CAP alone. BMDCs cross-presented a melanoma-specific antigen to CD8+ T cells through N-Pr-4-S-CAP-mediated melanoma cell death. Combination therapy using N-Pr-4-S-CAP and BMDCs elicited a superior anti-melanoma effect. These results suggest that the administration of N-Pr-4-S-CAP could be a new strategy for the prevention of local recurrence and distant metastasis of melanoma.
Collapse
Affiliation(s)
- Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8556, Hokkaido, Japan;
- Correspondence: ; Tel.: +81-(0)11-611-2111; Fax: +81-(0)11-643-2310
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan;
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Degakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan; (K.W.); (S.I.)
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8556, Hokkaido, Japan;
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Degakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan; (K.W.); (S.I.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, 1-27 Odori West 17, Chuo-ku, Sapporo 060-0042, Hokkaido, Japan;
| |
Collapse
|
5
|
Liu Z, Cheng Q, Ma X, Song M. Suppressing Effect of Na +/Ca 2+ Exchanger (NCX) Inhibitors on the Growth of Melanoma Cells. Int J Mol Sci 2022; 23:ijms23020901. [PMID: 35055084 PMCID: PMC8780355 DOI: 10.3390/ijms23020901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
The role of calcium ion (Ca2+) signaling in tumorigenicity has received increasing attention in melanoma research. Previous Ca2+ signaling studies focused on Ca2+ entry routes, but rarely explored the role of Ca2+ extrusion. Functioning of the Na+/Ca2+ exchanger (NCX) on the plasma membrane is the major way of Ca2+ extrusion, but very few associations between NCX and melanoma have been reported. Here, we explored whether pharmacological modulation of the NCX could suppress melanoma and promise new therapeutic strategies. Methods included cell viability assay, Ca2+ imaging, immunoblotting, and cell death analysis. The NCX inhibitors SN-6 and YM-244769 were used to selectively block reverse operation of the NCX. Bepridil, KB-R7943, and CB-DMB blocked either reverse or forward NCX operation. We found that blocking the reverse NCX with SN-6 or YM-244769 (5–100 μM) did not affect melanoma cells or increase cytosolic Ca2+. Bepridil, KB-R7943, and CB-DMB all significantly suppressed melanoma cells with IC50 values of 3–20 μM. Bepridil and KB-R7943 elevated intracellular Ca2+ level of melanoma. Bepridil-induced melanoma cell death came from cell cycle arrest and enhanced apoptosis, which were all attenuated by the Ca2+ chelator BAPTA-AM. As compared with melanoma, normal melanocytes had lower NCX1 expression and were less sensitive to the cytotoxicity of bepridil. In conclusion, blockade of the forward but not the reverse NCX leads to Ca2+-related cell death in melanoma and the NCX is a potential drug target for cancer therapy.
Collapse
|
6
|
Nanoparticle Systems Applied for Immunotherapy in Various Treatment Modalities. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Duan X, Chan C, Lin W. Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angew Chem Int Ed Engl 2019; 58:670-680. [PMID: 30016571 PMCID: PMC7837455 DOI: 10.1002/anie.201804882] [Citation(s) in RCA: 598] [Impact Index Per Article: 119.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapies that train or stimulate the inherent immunological systems to recognize, attack, and eradicate tumor cells with minimal damage to healthy cells have demonstrated promising clinical responses in recent years. However, most of these immunotherapeutic strategies only benefit a small subset of patients and cause systemic autoimmune side effects in some patients. Immunogenic cell death (ICD)-inducing modalities not only directly kill cancer cells but also induce antitumor immune responses against a broad spectrum of solid tumors. Such strategies for generating vaccine-like functions could be used to stimulate a "cold" tumor microenvironment to become an immunogenic, "hot" tumor microenvironment, working in synergy with immunotherapies to increase patient response rates and lead to successful treatment outcomes. This Minireview will focus on nanoparticle-based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
Guerra-Rosas E, Álvarez-Borrego J, Angulo-Molina A. Identification of melanoma cells: a method based in mean variance of signatures via spectral densities. BIOMEDICAL OPTICS EXPRESS 2017; 8:2185-2194. [PMID: 28736664 PMCID: PMC5516832 DOI: 10.1364/boe.8.002185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 05/04/2023]
Abstract
In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.
Collapse
Affiliation(s)
- Esperanza Guerra-Rosas
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), División de Física Aplicada, Departamento de Óptica, Carretera Ensenada-Tijuana No. 3918, Fraccionamiento Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| | - Josué Álvarez-Borrego
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), División de Física Aplicada, Departamento de Óptica, Carretera Ensenada-Tijuana No. 3918, Fraccionamiento Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Luis Encinas y Rosales S/N, Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
9
|
Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. NANOTECHNOLOGY 2016; 27:324004. [PMID: 27363314 DOI: 10.1088/0957-4484/27/32/324004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
Collapse
Affiliation(s)
- M Rosario Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
10
|
Nowacki M, Wisniewski M, Werengowska-Ciecwierz K, Roszek K, Czarnecka J, Łakomska I, Kloskowski T, Tyloch D, Debski R, Pietkun K, Pokrywczynska M, Grzanka D, Czajkowski R, Drewa G, Jundziłł A, Agyin JK, Habib SL, Terzyk AP, Drewa T. Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget 2015; 6:22776-98. [PMID: 26254295 PMCID: PMC4673199 DOI: 10.18632/oncotarget.4309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022] Open
Abstract
In general, detection of peritoneal carcinomatosis (PC) occurs at the late stage when there is no treatment option. In the present study, we designed novel drug delivery systems that are functionalized with anti-CD133 antibodies. The C1, C2 and C3 complexes with cisplatin were introduced into nanotubes, either physically or chemically. The complexes were reacted with anti-CD133 antibody to form the labeled product of A0-o-CX-chem-CD133. Cytotoxicity screening of all the complexes was performed on CHO cells. Data showed that both C2 and C3 Pt-complexes are more cytotoxic than C1. Flow-cytometry analysis showed that nanotubes conjugated to CD133 antibody have the ability to target cells expressing the CD133 antigen which is responsible for the emergence of resistance to chemotherapy and disease recurrence. The shortest survival rate was observed in the control mice group (K3) where no hyperthermic intraperitoneal chemotherapy procedures were used. On the other hand, the longest median survival rate was observed in the group treated with A0-o-C1-chem-CD133. In summary, we designed a novel drug delivery system based on carbon nanotubes loaded with Pt-prodrugs and functionalized with anti-CD133 antibodies. Our data demonstrates the effectiveness of the new drug delivery system and provides a novel therapeutic modality in the treatment of melanoma.
Collapse
Affiliation(s)
- Maciej Nowacki
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Marek Wisniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
- Invest-Tech, Research and Development Center, Torun, Poland
| | - Karolina Werengowska-Ciecwierz
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland
| | - I. Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Kloskowski
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Dominik Tyloch
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Robert Debski
- Department of Pediatric Hematology and Oncology, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Pietkun
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Dariusz Grzanka
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Chair of Dermatology Department, Faculty of Medicine, Nicolaus Copernicus University, Toruń, Sexually Transmitted Diseases and Immunodermatology, Bydgoszcz, Poland
| | - Gerard Drewa
- Department of Medical Biology, University of Bydgoszcz, Poland
| | - A. Jundziłł
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Joseph K. Agyin
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Geriatric, South Texas Veterans Health System, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Artur P. Terzyk
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Drewa
- Chair of Regenerative Medicine, Tissue Engineering Department, Ludwik Rydygier's Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
- Urology Department, Nicolaus Copernicus Hospital in Torun, Torun, Poland
| |
Collapse
|
11
|
Three-dimensional magnetic cell array for evaluation of anti-proliferative effects of chemo-thermo treatment on cancer spheroids. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Kobayashi T, Kakimi K, Nakayama E, Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine (Lond) 2015; 9:1715-26. [PMID: 25321171 DOI: 10.2217/nnm.14.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Magnetic nanoparticle-mediated hyperthermia (MNHT) generates heat to a local tumor tissue of above 43°C without damaging surrounding normal tissues. By applying MNHT, a significant amount of heat-shock proteins is expressed within and around the tumor tissues, inducing tumor-specific immune responses. In vivo experiments have indicated that MNHT can induce the regression of not only a local tumor tissue exposed to heat, but also distant metastatic tumors unexposed to heat. In this article, we introduce recent progress in the application of MNHT for antitumor treatments and summarize the mechanisms and processes of its biological effects during antitumor induction by MNHT. Several clinical trials have been conducted indicating that the MNHT system may add a promising and novel approach to antitumor therapy.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Research Institute for Biological Functions, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|