1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Canaveral CA, Lata W, Green AM, Cisek P. Biomechanical costs influence decisions made during ongoing actions. J Neurophysiol 2024; 132:461-469. [PMID: 38988286 PMCID: PMC11427048 DOI: 10.1152/jn.00090.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Accurate interaction with the environment relies on the integration of external information about the spatial layout of potential actions and knowledge of their costs and benefits. Previous studies have shown that when given a choice between voluntary reaching movements, humans tend to prefer actions with lower biomechanical costs. However, these studies primarily focused on decisions made before the onset of movement ("decide-then-act" scenarios), and it is not known to what extent their conclusions generalize to many real-life situations, in which decisions occur during ongoing actions ("decide-while-acting"). For example, one recent study found that biomechanical costs did not influence decisions to switch from a continuous manual tracking movement to a point-to-point movement, suggesting that biomechanical costs may be disregarded in decide-while-acting scenarios. To better understand this surprising result, we designed an experiment in which participants were faced with the decision between continuing to track a target moving along a straight path or changing paths to track a new target that gradually moved along a direction that deviated from the initial one. We manipulated tracking direction, angular deviation rate, and side of deviation, allowing us to compare scenarios where biomechanical costs favored either continuing or changing the path. Crucially, here the choice was always between two continuous tracking actions. Our results show that in this situation decisions clearly took biomechanical costs into account. Thus we conclude that biomechanics are not disregarded during decide-while-acting scenarios but rather that cost comparisons can only be made between similar types of actions.NEW & NOTEWORTHY In this study, we aim to shed light on how biomechanical factors influence decisions made during ongoing actions. Previous work suggested that decisions made during actions disregard biomechanical costs, in contrast to decisions made before movement. Our results challenge that proposal and suggest instead that the effect of biomechanical factors is dependent on the types of actions being compared (e.g., continuous tracking vs. point-to-point reaching). These findings contribute to our understanding of the dynamic interplay between biomechanical considerations and action choices during ongoing interactions with the environment.
Collapse
Affiliation(s)
| | - William Lata
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| | - Andrea M Green
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| | - Paul Cisek
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
A proposed attention-based model for spatial memory formation and retrieval. Cogn Process 2022; 24:199-212. [PMID: 36576704 DOI: 10.1007/s10339-022-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Animals use sensory information and memory to build internal representations of space. It has been shown that such representations extend beyond the geometry of an environment and also encode rich sensory experiences usually referred to as context. In mammals, contextual inputs from sensory cortices appear to be converging on the hippocampus as a key area for spatial representations and memory. How metric and external sensory inputs (e.g., visual context) are combined into a coherent and stable place representation is not fully understood. Here, I review the evidence of attentional effects along the ventral visual pathway and in the medial temporal lobe and propose an attention-based model for the integration of visual context in spatial representations. I further suggest that attention-based retrieval of spatial memories supports a feedback mechanism that allows consolidation of old memories and new sensory experiences related to the same place, thereby contributing to the stability of spatial representations. The resulting model has the potential to generate new hypotheses to explain complex responses of spatial cells such as place cells in the hippocampus.
Collapse
|
4
|
Hinze VK, Uslu O, Antono JE, Wilke M, Pooresmaeili A. The effect of subliminal incentives on goal-directed eye movements. J Neurophysiol 2021; 126:2014-2026. [PMID: 34758270 PMCID: PMC8715050 DOI: 10.1152/jn.00414.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decades, several studies have demonstrated that conscious and unconscious reward incentives both affect performance in physical and cognitive tasks, suggesting that goal-pursuit can arise from an unconscious will. Whether the planning of goal-directed saccadic eye movements during an effortful task can also be affected by subliminal reward cues has not been systematically investigated. We employed a novel task where participants made several eye movements back and forth between a fixation point and a number of peripheral targets. The total number of targets visited by the eyes in a fixed amount of time determined participants' monetary gain. The magnitude of the reward at stake was briefly shown at the beginning of each trial and masked by pattern images superimposed in time so that at shorter display durations participants perceived reward incentives subliminally. We found a main effect of reward across all display durations as higher reward enhanced participants' oculomotor effort measured as the frequency and peak velocity of saccades. This effect was strongest for consciously perceived rewards but also occurred when rewards were subliminally perceived. Although we did not find a statistically significant dissociation between the reward-related modulation of different saccadic parameters, across two experiments the most robust effect of subliminal rewards was observed for the modulation of the saccadic frequency but not the peak velocity. These results suggest that multiple indices of oculomotor effort can be incentivized by subliminal rewards and that saccadic frequency may provide the most sensitive indicator of subliminal incentivization of eye movements.
Collapse
Affiliation(s)
- Vasko Kilian Hinze
- Perception and Cognition, grid.418928.eEuropean Neuroscience Institute Göttingen, Göttingen, Germany
| | - Ozge Uslu
- grid.418928.eEuropean Neuroscience Institute Göttingen, Göttingen, Germany
| | | | - Melanie Wilke
- grid.7450.6University of Göttingen (Göttingen, Germany), Goettingen, Germany
| | - Arezoo Pooresmaeili
- Perception and Cognition, grid.418928.eEuropean Neuroscience Institute Göttingen, Goettingen, Germany
| |
Collapse
|
5
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
6
|
Williams J, D’Cunha NM, Anstice N, McKune A, Naumovski N. Effect of Green Tea Amino Acid L-Theanine on Physiological Responses: A Protocol for Clinical Trial. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-8. [DOI: 10.14218/erhm.2020.00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Mena-Garcia L, Maldonado-Lopez MJ, Fernandez I, Coco-Martin MB, Finat-Saez J, Martinez-Jimenez JL, Pastor-Jimeno JC, Arenillas JF. Visual processing speed in hemianopia patients secondary to acquired brain injury: a new assessment methodology. J Neuroeng Rehabil 2020; 17:12. [PMID: 32005265 PMCID: PMC6995150 DOI: 10.1186/s12984-020-0650-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Background There is a clinical need to identify diagnostic parameters that objectively quantify and monitor the effective visual ability of patients with homonymous visual field defects (HVFDs). Visual processing speed (VPS) is an objective measure of visual ability. It is the reaction time (RT) needed to correctly search and/or reach for a visual stimulus. VPS depends on six main brain processing systems: auditory-cognitive, attentional, working memory, visuocognitive, visuomotor, and executive. We designed a new assessment methodology capable of activating these six systems and measuring RTs to determine the VPS of patients with HVFDs. Methods New software was designed for assessing subject visual stimulus search and reach times (S-RT and R-RT respectively), measured in seconds. Thirty-two different everyday visual stimuli were divided in four complexity groups that were presented along 8 radial visual field positions at three different eccentricities (10o, 20o, and 30o). Thus, for each HVFD and control subject, 96 S- and R-RT measures related to VPS were registered. Three additional variables were measured to gather objective data on the validity of the test: eye-hand coordination mistakes (ehcM), eye-hand coordination accuracy (ehcA), and degrees of head movement (dHM, measured by a head-tracker system). HVFD patients and healthy controls (30 each) matched by age and gender were included. Each subject was assessed in a single visit. VPS measurements for HFVD patients and control subjects were compared for the complete test, for each stimulus complexity group, and for each eccentricity. Results VPS was significantly slower (p < 0.0001) in the HVFD group for the complete test, each stimulus complexity group, and each eccentricity. For the complete test, the VPS of the HVFD patients was 73.0% slower than controls. They also had 335.6% more ehcMs, 41.3% worse ehcA, and 189.0% more dHMs than the controls. Conclusions Measurement of VPS by this new assessment methodology could be an effective tool for objectively quantifying the visual ability of HVFD patients. Future research should evaluate the effectiveness of this novel method for measuring the impact that any specific neurovisual rehabilitation program has for these patients.
Collapse
Affiliation(s)
- Laura Mena-Garcia
- Universidad de Valladolid, Valladolid, Spain. .,Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain.
| | - Miguel J Maldonado-Lopez
- Universidad de Valladolid, Valladolid, Spain.,Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain
| | - Itziar Fernandez
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain.,CIBER BBN, National Institute of Health Carlos III, Madrid, Spain
| | - Maria B Coco-Martin
- Universidad de Valladolid, Valladolid, Spain.,Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Jaime Finat-Saez
- ASPAYM-Castilla y Leon Foundation, Research Centre for Physical Disabilities, Valladolid, Spain
| | - Jose L Martinez-Jimenez
- ASPAYM-Castilla y Leon Foundation, Research Centre for Physical Disabilities, Valladolid, Spain
| | - Jose C Pastor-Jimeno
- Universidad de Valladolid, Valladolid, Spain.,Instituto Universitario de Oftalmobiología Aplicada (IOBA), Eye Institute, Universidad de Valladolid, Valladolid, Spain.,Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Juan F Arenillas
- Universidad de Valladolid, Valladolid, Spain.,Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Basu D, Murthy A. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated? J Neurophysiol 2019; 123:107-119. [PMID: 31721632 DOI: 10.1152/jn.00545.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We use sequences of saccadic eye movements to continually explore our visual environments. Previous behavioral studies have established that saccades in a sequence may be programmed in parallel by the oculomotor system. In this study, we tested the neural correlates of parallel programming of saccade sequences in the frontal eye field (FEF), using single-unit electrophysiological recordings from macaques performing a sequential saccade task. It is known that FEF visual neurons instantiate target selection whereas FEF movement neurons undertake saccade preparation, where the activity corresponding to a saccade vector gradually ramps up. The question of whether FEF movement neurons are involved in concurrent processing of saccade plans is as yet unresolved. In the present study, we show that, when a peripheral target is foveated after a sequence of two saccades, presaccadic activity of FEF movement neurons for the second saccade can be activated while the first is still underway. Moreover, the onset of movement activity varied parametrically with the behaviorally measured time available for parallel programming. Although at central fixation coactivated FEF movement activity may vectorially encode the retinotopic location of the second target with respect to the fixation point or the remapped location of the second target, with respect to the first our evidence suggests the possibility of early encoding of the remapped second saccade vector. Taken together, the results indicate that movement neurons, although located terminally in the FEF visual-motor spectrum, can accomplish concurrent processing of multiple saccade plans, leading to rapid execution of saccade sequences.NEW & NOTEWORTHY The execution of purposeful sequences underlies much of goal-directed behavior. How different brain areas accomplish sequencing is poorly understood. Using a modified double-step task to generate a rapid sequence of two saccades, we demonstrate that downstream movement neurons in the frontal eye field (FEF), a prefrontal oculomotor area, allow for coactivation of the first and second movement plans that constitute the sequence. These results provide fundamental insights into the neural control of action sequencing.
Collapse
Affiliation(s)
- Debaleena Basu
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Lowet E, Gomes B, Srinivasan K, Zhou H, Schafer RJ, Desimone R. Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus. Neuron 2018; 99:207-214.e3. [PMID: 29937279 DOI: 10.1016/j.neuron.2018.05.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
Attention can be "covertly" directed without eye movements; yet, even during fixation, there are continuous microsaccades (MSs). In areas V4 and IT of macaques, we found that firing rates and stimulus representations were enhanced by attention but only following a MS toward the attended stimulus. The onset of neural attentional modulations was tightly coupled to the MS onset. The results reveal a major link between the effects of covert attention on cortical visual processing and the overt movement of the eyes.
Collapse
Affiliation(s)
- Eric Lowet
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Bruno Gomes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pa, Brazil; Instituto Tecnológico Vale Desenvolvimento Sustentável, Belém-Pa, Brazil
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huihui Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Robert John Schafer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Rao HM, Mayo JP, Sommer MA. Circuits for presaccadic visual remapping. J Neurophysiol 2016; 116:2624-2636. [PMID: 27655962 DOI: 10.1152/jn.00182.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about the reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Collapse
Affiliation(s)
- Hrishikesh M Rao
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina;
| | - J Patrick Mayo
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham, North Carolina; and
| | - Marc A Sommer
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke School of Medicine, Duke University, Durham, North Carolina; and.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Marino BFM, Mirabella G, Actis-Grosso R, Bricolo E, Ricciardelli P. Can we resist another person's gaze? Front Behav Neurosci 2015; 9:258. [PMID: 26550008 PMCID: PMC4623777 DOI: 10.3389/fnbeh.2015.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
Adaptive adjustments of strategies are needed to optimize behavior in a dynamic and uncertain world. A key function in implementing flexible behavior and exerting self-control is represented by the ability to stop the execution of an action when it is no longer appropriate for the environmental requests. Importantly, stimuli in our environment are not equally relevant and some are more valuable than others. One example is the gaze of other people, which is known to convey important social information about their direction of attention and their emotional and mental states. Indeed, gaze direction has a significant impact on the execution of voluntary saccades of an observer since it is capable of inducing in the observer an automatic gaze-following behavior: a phenomenon named social or joint attention. Nevertheless, people can exert volitional inhibitory control on saccadic eye movements during their planning. Little is known about the interaction between gaze direction signals and volitional inhibition of saccades. To fill this gap, we administered a countermanding task to 15 healthy participants in which they were asked to observe the eye region of a face with the eyes shut appearing at central fixation. In one condition, participants were required to suppress a saccade, that was previously instructed by a gaze shift toward one of two peripheral targets, when the eyes were suddenly shut down (social condition, SC). In a second condition, participants were asked to inhibit a saccade, that was previously instructed by a change in color of one of the two same targets, when a change of color of a central picture occurred (non-social condition, N-SC). We found that inhibitory control was more impaired in the SC, suggesting that actions initiated and stopped by social cues conveyed by the eyes are more difficult to withhold. This is probably due to the social value intrinsically linked to these cues and the many uses we make of them.
Collapse
Affiliation(s)
| | - Giovanni Mirabella
- Department of Physiology and Pharmacology "V. Erspamer", La Sapienza University Rome, Italy ; IRCSS Neuromed Pozzilli, Italy
| | - Rossana Actis-Grosso
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; Milan Center for Neuroscience Milan, Italy
| | - Emanuela Bricolo
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; Milan Center for Neuroscience Milan, Italy
| | - Paola Ricciardelli
- Department of Psychology, University of Milano-Bicocca Milan, Italy ; Milan Center for Neuroscience Milan, Italy
| |
Collapse
|
12
|
Pouget P. The cortex is in overall control of 'voluntary' eye movement. Eye (Lond) 2014; 29:241-5. [PMID: 25475239 DOI: 10.1038/eye.2014.284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/09/2022] Open
Abstract
The neural circuits that control eye movements are complex and distributed in brainstem, basal ganglia, cerebellum, and multiple areas of cortex. The anatomical function of the substrates implicated in eye movements has been studied for decades in numerous countries, laboratories, and clinics. The modest goal of this brief review is twofold. (1) To present a focused overview of the knowledge about the role of the cerebral cortex in voluntary control of eye movements. (2) To very briefly mention two findings showing that the accepted hierarchy between the frontal and the occipital sensory areas involved in sensory-motor transformation might not be so trivial to reconcile, and to interpret in the context of eye movement command. This presentation has been part of the 44th Cambridge Ophthalmological Symposium, on ocular motility, 3 September 2014 to 5 November 2014.
Collapse
Affiliation(s)
- P Pouget
- 1] CNRS 7225, Paris, France [2] ICM, Paris, France [3] Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
13
|
Kanellopoulos AJ, Asimellis G. OCT corneal epithelial topographic asymmetry as a sensitive diagnostic tool for early and advancing keratoconus. Clin Ophthalmol 2014; 8:2277-87. [PMID: 25429197 PMCID: PMC4242699 DOI: 10.2147/opth.s67902] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate epithelial thickness-distribution characteristics in a large group of keratoconic patients and their correlation to normal eyes employing anterior-segment optical coherence tomography (AS-OCT). MATERIALS AND METHODS The study group (n=160 eyes) consisted of clinically diagnosed keratoconus eyes; the control group (n=160) consisted of nonkeratoconic eyes. Three separate, three-dimensional epithelial thickness maps were obtained employing AS-OCT, enabling investigation of the pupil center, average, mid-peripheral, superior, inferior, maximum, minimum, and topographic epithelial thickness variability. Intraindividual repeatability of measurements was assessed. We introduced correlation of the epithelial data via newly defined indices. The epithelial thickness indices were then correlated with two Scheimpflug imaging-derived AS-irregularity indices: the index of height decentration, and the index of surface variance highly sensitive to early and advancing keratoconus diagnosis as validation. RESULTS Intraindividual repeatability of epithelial thickness measurement in the keratoconic group was on average 1.67 μm. For the control group, repeatability was on average 1.13 μm. In the keratoconic group, pupil-center epithelial thickness was 51.75±7.02 μm, while maximum and minimum epithelial thickness were 63.54±8.85 μm and 40.73±8.51 μm. In the control group, epithelial thickness at the center was 52.54±3.23 μm, with maximum 55.33±3.27 μm and minimum 48.50±3.98 μm epithelial thickness. Topographic variability was 6.07±3.55 μm in the keratoconic group, while for the control group it was 1.59±0.79 μm. In keratoconus, topographic epithelial thickness change from normal, correlated tightly with the topometric asymmetry indices of IHD and ISV derived from Scheimpflug imaging. CONCLUSION Simple, OCT-derived epithelial mapping, appears to have critical potential in early and advancing keratoconus diagnosis, confirmed with its correlation with established Scheimpflug-derived asymmetry topometric indices.
Collapse
Affiliation(s)
- Anastasios John Kanellopoulos
- LaserVision.gr Eye Institute, Athens, Greece ; Department of Ophthalmology, New York University Medical School, New York, NY, USA
| | | |
Collapse
|