1
|
Listro R, Rossino G, Piaggi F, Sonekan FF, Rossi D, Linciano P, Collina S. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future. Front Chem 2022; 10:995351. [PMID: 36186578 PMCID: PMC9520293 DOI: 10.3389/fchem.2022.995351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Suramin was the first urea-based drug to be approved in clinic, and in the following century a number of milestone drugs based on this scaffold were developed. Indeed, urea soon became a privileged scaffold in medicinal chemistry for its capability to establish a peculiar network of drug-target interactions, for its physicochemical properties that are useful for tuning the druggability of the new chemical entities, and for its structural and synthetic versatility that opened the door to numerous drug design possibilities. In this review, we highlight the relevance of the urea moiety in the medicinal chemistry scenario of anticancer drugs with a special focus on the kinase inhibitors for which this scaffold represented and still represents a pivotal pharmacophoric feature. A general outlook on the approved drugs, recent patents, and current research in this field is herein provided, and the role of the urea moiety in the drug discovery process is discussed form a medicinal chemistry standpoint. We believe that the present review can benefit both academia and pharmaceutical companies' medicinal chemists to prompt research towards new urea derivatives as anticancer agents.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federica Piaggi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Falilat Folasade Sonekan
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Cheng X, Shkel IA, Molzahn C, Lambert D, Karim R, Record MT. Quantifying Interactions of Nucleobase Atoms with Model Compounds for the Peptide Backbone and Glutamine and Asparagine Side Chains in Water. Biochemistry 2018. [PMID: 29533642 DOI: 10.1021/acs.biochem.8b00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkylureas display hydrocarbon and amide groups, the primary functional groups of proteins. To obtain the thermodynamic information that is needed to analyze interactions of amides and proteins with nucleobases and nucleic acids, we quantify preferential interactions of alkylureas with nucleobases differing in the amount and composition of water-accessible surface area (ASA) by solubility assays. Using an established additive ASA-based analysis, we interpret these thermodynamic results to determine interactions of each alkylurea with five types of nucleobase unified atoms (carbonyl sp2O, amino sp3N, ring sp2N, methyl sp3C, and ring sp2C). All alkylureas interact favorably with nucleobase sp2C and sp3C atoms; these interactions become more favorable with an increasing level of alkylation of urea. Interactions with nucleobase sp2O are most favorable for urea, less favorable for methylurea and ethylurea, and unfavorable for dialkylated ureas. Contributions to overall alkylurea-nucleobase interactions from interactions with each nucleobase atom type are proportional to the ASA of that atom type with proportionality constant (interaction strength) α, as observed previously for urea. Trends in α-values for interactions of alkylureas with nucleobase atom types parallel those for corresponding amide compound atom types, offset because nucleobase α-values are more favorable. Comparisons between ethylated and methylated ureas show interactions of amide compound sp3C with nucleobase sp2C, sp3C, sp2N, and sp3N atoms are favorable while amide sp3C-nucleobase sp2O interactions are unfavorable. Strongly favorable interactions of urea with nucleobase sp2O but weakly favorable interactions with nucleobase sp3N indicate that amide sp2N-nucleobase sp2O and nucleobase sp3N-amide sp2O hydrogen bonding (NH···O═C) interactions are favorable while amide sp2N-nucleobase sp3N interactions are unfavorable. These favorable amide-nucleobase hydrogen bonding interactions are prevalent in specific protein-nucleotide complexes.
Collapse
|
4
|
Affiliation(s)
- Udo Kaatze
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Cheng X, Shkel IA, O'Connor K, Henrich J, Molzahn C, Lambert D, Record MT. Experimental Atom-by-Atom Dissection of Amide-Amide and Amide-Hydrocarbon Interactions in H 2O. J Am Chem Soc 2017; 139:9885-9894. [PMID: 28678492 PMCID: PMC5580340 DOI: 10.1021/jacs.7b03261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantitative information about amide interactions in water is needed to understand their contributions to protein folding and amide effects on aqueous processes and to compare with computer simulations. Here we quantify interactions of urea, alkylated ureas, and other amides by osmometry and amide-aromatic hydrocarbon interactions by solubility. Analysis of these data yields strengths of interaction of ureas and naphthalene with amide sp2O, amide sp2N, aliphatic sp3C, and amide and aromatic sp2C unified atoms in water. Interactions of amide sp2O with urea and naphthalene are favorable, while amide sp2O-alkylurea interactions are unfavorable, becoming more unfavorable with increasing alkylation. Hence, amide sp2O-amide sp2N interactions (proposed n-σ* hydrogen bond) and amide sp2O-aromatic sp2C (proposed n-π*) interactions are favorable in water, while amide sp2O-sp3C interactions are unfavorable. Interactions of all ureas with sp3C and amide sp2N are favorable and increase in strength with increasing alkylation, indicating favorable sp3C-amide sp2N and sp3C-sp3C interactions. Naphthalene results show that aromatic sp2C-amide sp2N interactions in water are unfavorable while sp2C-sp3C interactions are favorable. These results allow interactions of amide and hydrocarbon moieties and effects of urea and alkylureas on aqueous processes to be predicted or interpreted in terms of structural information. We predict strengths of favorable urea-benzene and N-methylacetamide interactions from experimental information to compare with simulations and indicate how amounts of hydrocarbon and amide surfaces buried in protein folding and other biopolymer processes and transition states can be determined from analysis of urea and diethylurea effects on equilibrium and rate constants.
Collapse
Affiliation(s)
- Xian Cheng
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Irina A Shkel
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kevin O'Connor
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - John Henrich
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Cristen Molzahn
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David Lambert
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - M Thomas Record
- Program in Biophysics and ‡Departments of Biochemistry and §Chemistry University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Zeindlhofer V, Khlan D, Bica K, Schröder C. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 2017; 7:3495-3504. [PMID: 28496974 PMCID: PMC5361174 DOI: 10.1039/c6ra24736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| | - Diana Khlan
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Christian Schröder
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| |
Collapse
|
7
|
Mustafa SFZ, Maarof H, Ahmed R, Abdallah HH. Diffusional behavior and guest conformational analysis of hexadecane-1,16-diol and hexadecane in urea crystal model via molecular dynamics simulation approach. J Mol Model 2016; 22:290. [PMID: 27866329 DOI: 10.1007/s00894-016-3152-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/13/2016] [Indexed: 11/24/2022]
Abstract
Diffusion at the atomic or molecular level is a source of many physical, chemical, and biological processes taking place in plentiful materials. This work is an endeavor toward investigating the diffusional behavior of two different type of guests, hexadecane-1,16-diol and hexadecane enclathration in urea tunnel architecture, whereby the correlation of the diffusion mechanism with the guest's structural and conformational properties is explored. To carry out this study, molecular dynamics simulation approach is adopted. It is found that hexadecane-1,16-diol exhibit slower diffusion with an average diffusion coefficient value [Formula: see text], where hexadecane diffuse more rapidly with an average diffusion coefficient value [Formula: see text]. It is also observed that the structural properties influence the guest's travel distance and torsion angle distribution of the trans and gauche conformational proportion. Furthermore, the observed high energy barrier accounted for hexadecane-1,16-diol and low energy barrier for hexadecane along urea tunnel systems was analyzed. The comparison of our obtained results are in close agreement with the available experimental measurements, i.e., gauche proportion properties between two different guest molecules correlate well with Raman spectroscopy investigation on α,ω-dihalogenoalkane/urea inclusion compounds. Our calculations also successfully endorse the structure-property relation between the two systems.
Collapse
Affiliation(s)
- Siti Fatimah Zaharah Mustafa
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - Hasmerya Maarof
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia.
| | - Rashid Ahmed
- Department of Physics, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia
| | | |
Collapse
|
8
|
Inoue Y, Sato S, Yamamoto C, Yamasaki M, Kanamoto I. Study of complex formation of carbamazepine with thiourea. Chem Pharm Bull (Tokyo) 2014; 62:1125-30. [PMID: 25366314 DOI: 10.1248/cpb.c14-00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study, we evaluated a complex between thiourea (TU) and carbamazepine (CBZ) of a poorly soluble drug by using powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, X-ray crystallography and the solubility test. PXRD of TU/CBZ=2/1, 1/1, and 1/2 prepared by solvent evaporation (EVP) revealed characteristic diffraction peaks at 2θ = 6.7°, 8.8°, 13.5°, and 20.4°, therefore molecular interaction between TU and CBZ presumably occurred. Results of the FT-IR spectroscopy, asymmetric and symmetric NH stretching vibration of TU were shifted to high region by TU/CBZ = 2/1, 1/1, and 1/2 EVP. TU/CBZ = 2/1 and 1/1 EVP had absorption derived from TU. It was considered that complex were formed by TU/CBZ = 1/2. X-Ray crystallography of TU and CBZ revealed a crystal structure with one TU molecule arranged near two CBZ molecules. Molecules of the same type overlap in this layer. When doing a solubility test by using CBZ and samples of EVP, physical mixture and crystals in TU/CBZ = 1/2 to confirm the solubility in water of TU/CBZ complex, there is no difference with the CBZ. It considered that the structure of a complex differs from the tunnel structure of inclusion complexes that has been previously reported contribute to result it.
Collapse
Affiliation(s)
- Yutaka Inoue
- Department of Drug Safety Management, Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | |
Collapse
|