1
|
Kalef-Ezra E, Edzeamey FJ, Valle A, Khonsari H, Kleine P, Oggianu C, Al-Mahdawi S, Pook MA, Anjomani Virmouni S. A new FRDA mouse model [ Fxn null:YG8s(GAA) > 800] with more than 800 GAA repeats. Front Neurosci 2023; 17:930422. [PMID: 36777637 PMCID: PMC9909538 DOI: 10.3389/fnins.2023.930422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Friedreich's ataxia (FRDA) is an inherited recessive neurodegenerative disorder caused by a homozygous guanine-adenine-adenine (GAA) repeat expansion within intron 1 of the FXN gene, which encodes the essential mitochondrial protein frataxin. There is still no effective therapy for FRDA, therefore the development of optimal cell and animal models of the disease is one of the priorities for preclinical therapeutic testing. Methods We obtained the latest FRDA humanized mouse model that was generated on the basis of our previous YG8sR, by Jackson laboratory [YG8JR, Fxn null:YG8s(GAA) > 800]. We characterized the behavioral, cellular, molecular and epigenetics properties of the YG8JR model, which has the largest GAA repeat sizes compared to all the current FRDA mouse models. Results We found statistically significant behavioral deficits, together with reduced levels of frataxin mRNA and protein, and aconitase activity in YG8JR mice compared with control Y47JR mice. YG8JR mice exhibit intergenerational GAA repeat instability by the analysis of parent and offspring tissue samples. Somatic GAA repeat instability was also detected in individual brain and cerebellum tissue samples. In addition, increased DNA methylation of CpG U13 was identified in FXN GAA repeat region in the brain, cerebellum, and heart tissues. Furthermore, we show decreased histone H3K9 acetylation and increased H3K9 methylation of YG8JR cerebellum tissues within the FXN gene, upstream and downstream of the GAA repeat region compared to Y47JR controls. Discussion These studies provide a detailed characterization of the GAA repeat expansion-based YG8JR transgenic mouse models that will help investigations of FRDA disease mechanisms and therapy.
Collapse
Affiliation(s)
- Ester Kalef-Ezra
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Adamo Valle
- Energy Metabolism and Nutrition, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma, Spain,Health Research Institute of Balearic Islands (IdISBa), Palma, Spain,Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Hassan Khonsari
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Paula Kleine
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Carlo Oggianu
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom,*Correspondence: Sara Anjomani Virmouni,
| |
Collapse
|
2
|
Wang D, Ho ES, Cotticelli MG, Xu P, Napierala JS, Hauser LA, Napierala M, Himes BE, Wilson RB, Lynch DR, Mesaros C. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia. J Lipid Res 2022; 63:100255. [PMID: 35850241 PMCID: PMC9399481 DOI: 10.1016/j.jlr.2022.100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and β-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.
Collapse
Affiliation(s)
- Dezhen Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine S Ho
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill S Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Lauren A Hauser
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Xiao X, Liu X, Jiao B. Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol 2020; 11:538301. [PMID: 33178099 PMCID: PMC7594522 DOI: 10.3389/fneur.2020.538301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: This review summarizes recent findings on the epigenetics of Alzheimer's disease (AD) and provides therapeutic strategies for AD. Methods: We searched the following keywords: “genetics,” “epigenetics,” “Alzheimer's disease,” “DNA methylation,” “DNA hydroxymethylation,” “histone modifications,” “non-coding RNAs,” and “therapeutic strategies” in PubMed. Results: In this review, we summarizes recent studies of epigenetics in AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. There are no consistent results of global DNA methylation/hydroxymethylation in AD. Epigenetic genome-wide association studies show that many differentially methylated sites exist in AD. Several studies investigate the role of histone modifications in AD; for example, histone acetylation decreases, whereas H3 phosphorylation increases significantly in AD. In addition, non-coding RNAs, such as microRNA-16 and BACE1-antisense transcript (BACE1-AS), are associated with the pathology of AD. These epigenetic changes provide us with novel insights into the pathogenesis of AD and may be potential therapeutic strategies for AD. Conclusion: Epigenetics is associated with the pathogenesis of AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs, which provide potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
4
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Wang T, Zhang J, Xu Y. Epigenetic Basis of Lead-Induced Neurological Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134878. [PMID: 32645824 PMCID: PMC7370007 DOI: 10.3390/ijerph17134878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Environmental lead (Pb) exposure is closely associated with pathogenesis of a range of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), attention deficit/hyperactivity disorder (ADHD), etc. Epigenetic machinery modulates neural development and activities, while faulty epigenetic regulation contributes to the diverse forms of CNS (central nervous system) abnormalities and diseases. As a potent epigenetic modifier, lead is thought to cause neurological disorders through modulating epigenetic mechanisms. Specifically, increasing evidence linked aberrant DNA methylations, histone modifications as well as ncRNAs (non-coding RNAs) with AD cases, among which circRNA (circular RNA) stands out as a new and promising field for association studies. In 23-year-old primates with developmental lead treatment, Zawia group discovered a variety of epigenetic changes relating to AD pathogenesis. This is a direct evidence implicating epigenetic basis in lead-induced AD animals with an entire lifespan. Additionally, some epigenetic molecules associated with AD etiology were also known to respond to chronic lead exposure in comparable disease models, indicating potentially interlaced mechanisms with respect to the studied neurotoxic and pathological events. Of note, epigenetic molecules acted via globally or selectively influencing the expression of disease-related genes. Compared to AD, the association of lead exposure with other neurological disorders were primarily supported by epidemiological survey, with fewer reports connecting epigenetic regulators with lead-induced pathogenesis. Some pharmaceuticals, such as HDAC (histone deacetylase) inhibitors and DNA methylation inhibitors, were developed to deal with CNS disease by targeting epigenetic components. Still, understandings are insufficient regarding the cause–consequence relations of epigenetic factors and neurological illness. Therefore, clear evidence should be provided in future investigations to address detailed roles of novel epigenetic factors in lead-induced neurological disorders, and efforts of developing specific epigenetic therapeutics should be appraised.
Collapse
Affiliation(s)
| | | | - Yi Xu
- Correspondence: ; Tel.: +86-183-2613-5046
| |
Collapse
|
6
|
Sherzai M, Valle A, Perry N, Kalef-Ezra E, Al-Mahdawi S, Pook M, Anjomani Virmouni S. HMTase Inhibitors as a Potential Epigenetic-Based Therapeutic Approach for Friedreich's Ataxia. Front Genet 2020; 11:584. [PMID: 32582297 PMCID: PMC7291394 DOI: 10.3389/fgene.2020.00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disorder caused by a homozygous GAA repeat expansion mutation in intron 1 of the frataxin gene (FXN), which instigates reduced transcription. As a consequence, reduced levels of frataxin protein lead to mitochondrial iron accumulation, oxidative stress, and ultimately cell death; particularly in dorsal root ganglia (DRG) sensory neurons and the dentate nucleus of the cerebellum. In addition to neurological disability, FRDA is associated with cardiomyopathy, diabetes mellitus, and skeletal deformities. Currently there is no effective treatment for FRDA and patients die prematurely. Recent findings suggest that abnormal GAA expansion plays a role in histone modification, subjecting the FXN gene to heterochromatin silencing. Therefore, as an epigenetic-based therapy, we investigated the efficacy and tolerability of two histone methyltransferase (HMTase) inhibitor compounds, BIX0194 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), to specifically target and reduce H3K9me2/3 and H3K27me3 levels, respectively, in FRDA fibroblasts. We show that a combination treatment of BIX0194 and GSK126, significantly increased FXN gene expression levels and reduced the repressive histone marks. However, no increase in frataxin protein levels was observed. Nevertheless, our results are still promising and may encourage to investigate HMTase inhibitors with other synergistic epigenetic-based therapies for further preliminary studies.
Collapse
Affiliation(s)
- Mursal Sherzai
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Adamo Valle
- Energy Metabolism and Nutrition, Research Institute of Health Sciences (IUNICS) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain.,Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Nicholas Perry
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Ester Kalef-Ezra
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
7
|
Jasoliya M, Sacca F, Sahdeo S, Chedin F, Pane C, Brescia Morra V, Filla A, Pook M, Cortopassi G. Dimethyl fumarate dosing in humans increases frataxin expression: A potential therapy for Friedreich's Ataxia. PLoS One 2019; 14:e0217776. [PMID: 31158268 PMCID: PMC6546270 DOI: 10.1371/journal.pone.0217776] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 11/19/2022] Open
Abstract
Friedreich's Ataxia (FA) is an inherited neurodegenerative disorder resulting from decreased expression of the mitochondrial protein frataxin, for which there is no approved therapy. High throughput screening of clinically used drugs identified Dimethyl fumarate (DMF) as protective in FA patient cells. Here we demonstrate that DMF significantly increases frataxin gene (FXN) expression in FA cell model, FA mouse model and in DMF treated humans. DMF also rescues mitochondrial biogenesis deficiency in FA-patient derived cell model. We further examined the mechanism of DMF's frataxin induction in FA patient cells. It has been shown that transcription-inhibitory R-loops form at GAA expansion mutations, thus decreasing FXN expression. In FA patient cells, we demonstrate that DMF significantly increases transcription initiation. As a potential consequence, we observe significant reduction in both R-loop formation and transcriptional pausing thereby significantly increasing FXN expression. Lastly, DMF dosed Multiple Sclerosis (MS) patients showed significant increase in FXN expression by ~85%. Since inherited deficiency in FXN is the primary cause of FA, and DMF is demonstrated to increase FXN expression in humans, DMF could be considered for Friedreich's therapy.
Collapse
Affiliation(s)
- Mittal Jasoliya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Francesco Sacca
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Sunil Sahdeo
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Chiara Pane
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Mark Pook
- Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
8
|
Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018; 9:579. [PMID: 30555513 PMCID: PMC6283895 DOI: 10.3389/fgene.2018.00579] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder that imposes a great burden on the world. The mechanisms of AD are not yet fully understood. Current insight into the role of epigenetics in the mechanism of AD focuses on DNA methylation, remodeling of chromatin, histone modifications and non-coding RNA regulation. This review summarizes the current state of knowledge regarding the role of epigenetics in AD and the possibilities for epigenetically based therapeutics. The general conclusion is that epigenetic mechanisms play a variety of crucial roles in the development of AD, and there are a number of viable possibilities for treatments based on modulating these effects, but significant advances in knowledge and technology will be needed to move these treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
9
|
Vannocci T, Notario Manzano R, Beccalli O, Bettegazzi B, Grohovaz F, Cinque G, de Riso A, Quaroni L, Codazzi F, Pastore A. Adding a temporal dimension to the study of Friedreich's ataxia: the effect of frataxin overexpression in a human cell model. Dis Model Mech 2018; 11:dmm032706. [PMID: 29794127 PMCID: PMC6031361 DOI: 10.1242/dmm.032706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 12/27/2022] Open
Abstract
The neurodegenerative disease Friedreich's ataxia is caused by lower than normal levels of frataxin, an important protein involved in iron-sulfur (Fe-S) cluster biogenesis. An important step in designing strategies to treat this disease is to understand whether increasing the frataxin levels by gene therapy would simply be beneficial or detrimental, because previous studies, mostly based on animal models, have reported conflicting results. Here, we have exploited an inducible model, which we developed using the CRISPR/Cas9 methodology, to study the effects of frataxin overexpression in human cells and monitor how the system recovers after overexpression. Using new tools, which range from high-throughput microscopy to in cell infrared, we prove that overexpression of the frataxin gene affects the cellular metabolism. It also leads to a significant increase of oxidative stress and labile iron pool levels. These cellular alterations are similar to those observed when the gene is partly silenced, as occurs in Friedreich's ataxia patients. Our data suggest that the levels of frataxin must be tightly regulated and fine-tuned, with any imbalance leading to oxidative stress and toxicity.
Collapse
Affiliation(s)
- Tommaso Vannocci
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Roberto Notario Manzano
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Ombretta Beccalli
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianfelice Cinque
- Department of Physical Chemistry and Electrochemistry, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | | | - Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, PL-30387, Kraków, Poland
| | - Franca Codazzi
- Division of Neuroscience, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annalisa Pastore
- Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
- Molecular Medicine Department, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
10
|
Vannocci T, Pastore A. The time dimension of neurodegeneration: the example of Friedreich's ataxia. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2017; 2:31-34. [PMID: 30944908 PMCID: PMC6443029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tommaso Vannocci
- Maurice Wohl Institute, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK
| | - Annalisa Pastore
- Maurice Wohl Institute, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK,Molecular Medicine Department, University of Pavia, Pavia, Italy,Correspondence: Dr. Annalisa Pastore, Maurice Wohl Institute, King’s College, London, 5 Cutcombe Rd., London SE5 9RT, UK,
| |
Collapse
|
11
|
Khonsari H, Schneider M, Al-Mahdawi S, Chianea YG, Themis M, Parris C, Pook MA, Themis M. Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts. Gene Ther 2016; 23:846-856. [PMID: 27518705 PMCID: PMC5143368 DOI: 10.1038/gt.2016.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron-sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.
Collapse
Affiliation(s)
- H Khonsari
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
| | - M Schneider
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
| | - S Al-Mahdawi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
| | - Y G Chianea
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
| | - M Themis
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - C Parris
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - M A Pook
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
| | - M Themis
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, Middlesex, UK
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
12
|
Tarai S, Bit A, dos Reis HJ, Palotás A, Rizvanov A, Bissoyi A. Stratifying Heterogeneous Dimension of Neurodegenerative Diseases: Intervention for Stipulating Epigenetic Factors to Combat Oxidative Stress in Human Brain. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Vannocci T, Faggianelli N, Zaccagnino S, della Rosa I, Adinolfi S, Pastore A. A new cellular model to follow Friedreich's ataxia development in a time-resolved way. Dis Model Mech 2015; 8:711-9. [PMID: 26035392 PMCID: PMC4486863 DOI: 10.1242/dmm.020545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 01/30/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a recessive autosomal ataxia caused by reduced levels of frataxin (FXN), an essential mitochondrial protein that is highly conserved from bacteria to primates. The exact role of frataxin and its primary function remain unclear although this information would be very valuable to design a therapeutic approach for FRDA. A main difficulty encountered so far has been that of establishing a clear temporal relationship between the different observations that could allow a distinction between causes and secondary effects, and provide a clear link between aging and disease development. To approach this problem, we developed a cellular model in which we can switch off/on in a time-controlled way the frataxin gene partially mimicking what happens in the disease. We exploited the TALEN and CRISPR methodologies to engineer a cell line where the presence of an exogenous, inducible FXN gene rescues the cells from the knockout of the two endogenous FXN genes. This system allows the possibility of testing the progression of disease and is a valuable tool for following the phenotype with different newly acquired markers.
Collapse
Affiliation(s)
- Tommaso Vannocci
- Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Nathalie Faggianelli
- Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Silvia Zaccagnino
- Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Ilaria della Rosa
- Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Salvatore Adinolfi
- Department of Basic and Clinical Neurosciences, Kings College London, London NW7 1AA, UK
| | - Annalisa Pastore
- Department of Basic and Clinical Neurosciences, Kings College London, London NW7 1AA, UK
| |
Collapse
|
14
|
Anjomani Virmouni S, Ezzatizadeh V, Sandi C, Sandi M, Al-Mahdawi S, Chutake Y, Pook MA. A novel GAA-repeat-expansion-based mouse model of Friedreich's ataxia. Dis Model Mech 2015; 8:225-35. [PMID: 25681319 PMCID: PMC4348561 DOI: 10.1242/dmm.018952] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90-190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy.
Collapse
Affiliation(s)
- Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Vahid Ezzatizadeh
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Chiranjeevi Sandi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Madhavi Sandi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Yogesh Chutake
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
15
|
Sandi C, Sandi M, Anjomani Virmouni S, Al-Mahdawi S, Pook MA. Epigenetic-based therapies for Friedreich ataxia. Front Genet 2014; 5:165. [PMID: 24917884 PMCID: PMC4042889 DOI: 10.3389/fgene.2014.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022] Open
Abstract
Friedreich ataxia (FRDA) is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene silencing. Such epigenetic marks can be reversed, making them suitable targets for epigenetic-based therapy. Furthermore, since FRDA is caused by insufficient, but functional, frataxin protein, epigenetic-based transcriptional re-activation of the FXN gene is an attractive therapeutic option. In this review we summarize our current understanding of the epigenetic basis of FXN gene silencing and we discuss current epigenetic-based FRDA therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Mark A. Pook
- Division of Biosciences, School of Health Sciences and Social Care, Brunel University LondonUxbridge, UK
| |
Collapse
|
16
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
17
|
Sandi C, Sandi M, Jassal H, Ezzatizadeh V, Anjomani-Virmouni S, Al-Mahdawi S, Pook MA. Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models. PLoS One 2014; 9:e89488. [PMID: 24586819 PMCID: PMC3931792 DOI: 10.1371/journal.pone.0089488] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. METHODOLOGY/PRINCIPAL FINDINGS We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. CONCLUSIONS/SIGNIFICANCE We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice.
Collapse
Affiliation(s)
- Chiranjeevi Sandi
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Madhavi Sandi
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Harvinder Jassal
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Vahid Ezzatizadeh
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sara Anjomani-Virmouni
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Veerappan CS, Sleiman S, Coppola G. Epigenetics of Alzheimer's disease and frontotemporal dementia. Neurotherapeutics 2013; 10:709-21. [PMID: 24150812 PMCID: PMC3805876 DOI: 10.1007/s13311-013-0219-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article will review the recent advances in the understanding of the role of epigenetic modifications and the promise of future epigenetic therapy in neurodegenerative dementias, including Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Chendhore S Veerappan
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
19
|
Bayot A, Rustin P. Friedreich's ataxia, frataxin, PIP5K1B: echo of a distant fracas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:725635. [PMID: 24194977 PMCID: PMC3806116 DOI: 10.1155/2013/725635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/12/2013] [Indexed: 01/15/2023]
Abstract
"Frataxin fracas" were the words used when referring to the frataxin-encoding gene (FXN) burst in as a motive to disqualify an alternative candidate gene, PIP5K1B, as an actor in Friedreich's ataxia (FRDA) (Campuzano et al., 1996; Cossee et al., 1997; Carvajal et al., 1996). The instrumental role in the disease of large triplet expansions in the first intron of FXN has been thereafter fully confirmed, and this no longer suffers any dispute (Koeppen, 2011). On the other hand, a recent study suggests that the consequences of these large expansions in FXN are wider than previously thought and that the expression of surrounding genes, including PIP5K1B, could be concurrently modulated by these large expansions (Bayot et al., 2013). This recent observation raises a number of important and yet unanswered questions for scientists and clinicians working on FRDA; these questions are the substratum of this paper.
Collapse
Affiliation(s)
- Aurélien Bayot
- INSERM UMR 676, Bâtiment Ecran, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Site Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Pierre Rustin
- INSERM UMR 676, Bâtiment Ecran, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Site Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
20
|
Al-Mahdawi S, Sandi C, Mouro Pinto R, Pook MA. Friedreich ataxia patient tissues exhibit increased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXN locus. PLoS One 2013; 8:e74956. [PMID: 24023969 PMCID: PMC3762780 DOI: 10.1371/journal.pone.0074956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC. METHODOLOGY/PRINCIPAL FINDINGS We have developed specific MethylScreen restriction enzyme digestion and qPCR-based protocols to more rapidly quantify DNA methylation at four CpG sites in the FXN upstream GAA region. Increased DNA methylation was confirmed at all four CpG sites in both FRDA cerebellum and heart tissues. We have also analysed the DNA methylation status in FRDA cerebellum and heart tissues using an approach that enables distinction between 5 hmC and 5 mC. Our analysis reveals that the majority of DNA methylation in both FRDA and unaffected tissues actually comprises 5 hmC rather than 5 mC. We have also identified decreased occupancy of the chromatin insulator protein CTCF (CCCTC-binding factor) at the FXN 5' UTR region in the same FRDA cerebellum tissues. CONCLUSIONS/SIGNIFICANCE Increased DNA methylation at the FXN upstream GAA region, primarily 5 hmC rather than 5 mC, and decreased CTCF occupancy at the FXN 5' UTR are associated with FRDA disease-relevant human tissues. The role of such molecular mechanisms in FRDA pathogenesis has now to be determined.
Collapse
Affiliation(s)
- Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, United Kingdom
| | - Chiranjeevi Sandi
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, United Kingdom
| | - Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, United Kingdom
| |
Collapse
|
21
|
Chapdelaine P, Coulombe Z, Chikh A, Gérard C, Tremblay JP. A Potential New Therapeutic Approach for Friedreich Ataxia: Induction of Frataxin Expression With TALE Proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e119. [PMID: 24002729 PMCID: PMC4028015 DOI: 10.1038/mtna.2013.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
Abstract
TALEs targeting a promoter sequence and fused with a transcription activation domain (TAD) may be used to specifically induce the expression of a gene as a potential treatment for haploinsufficiency. This potential therapeutic approach was applied to increase the expression of frataxin in fibroblasts of Friedreich ataxia (FRDA) patients. FRDA fibroblast cells were nucleofected with a pCR3.1 expression vector coding for TALEFrat#8 fused with VP64. A twofold increase of the frataxin mRNA (detected by quantitative reverse transcription-PCR (qRT-PCR)) associated with a similar increase of the mature form of the frataxin protein was observed. The frataxin mRNA and protein were also increased by this TALE in the fibroblasts of the YG8R mouse model. The addition of 5-aza-2′-deoxycytidine (5-Aza-dC) or of valproic acid (VPA) to the TALE treatment did not produce significant improvement. Other TADs (i.e., p65, TFAP2α, SRF, SP1, and MyoD) fused with the TALEFrat#8 gene did not produce a significant increase in the frataxin protein. Thus the TALEFrat#8-VP64 recombinant protein targeting the frataxin promoter could eventually be used to increase the frataxin expression and alleviate the FRDA symptoms.
Collapse
Affiliation(s)
- Pierre Chapdelaine
- 1] Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada [2] Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
22
|
Koeppen AH, Kuntzsch EC, Bjork ST, Ramirez RL, Mazurkiewicz JE, Feustel PJ. Friedreich ataxia: metal dysmetabolism in dorsal root ganglia. Acta Neuropathol Commun 2013; 1:26. [PMID: 24252376 PMCID: PMC3893523 DOI: 10.1186/2051-5960-1-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Friedreich ataxia (FA) causes distinctive lesions of dorsal root ganglia (DRG), including neuronal atrophy, satellite cell hyperplasia, and absorption of dying nerve cells into residual nodules. Two mechanisms may be involved: hypoplasia of DRG neurons from birth and superimposed iron (Fe)- and zinc (Zn)-mediated oxidative injury. This report presents a systematic analysis of DRG in 7 FA patients and 13 normal controls by X-ray fluorescence (XRF) of polyethylene glycol-embedded DRG; double-label confocal immunofluorescence microscopy of Zn- and Fe-related proteins; and immunohistochemistry of frataxin and the mitochondrial marker, ATP synthase F1 complex V β-polypeptide (ATP5B). RESULTS XRF revealed normal total Zn- and Fe-levels in the neural tissue of DRG in FA (mean ± standard deviation): Zn=5.46±2.29 μg/ml, Fe=19.99±13.26 μg/ml in FA; Zn=8.16±6.19 μg/ml, Fe=23.85±12.23 μg/ml in controls. Despite these unchanged total metal concentrations, Zn- and Fe-related proteins displayed major shifts in their cellular localization. The Zn transporter Zip14 that is normally expressed in DRG neurons and satellite cells became more prominent in hyperplastic satellite cells and residual nodules. Metallothionein 3 (MT3) stains confirmed reduction of neuronal size in FA, but MT3 expression remained low in hyperplastic satellite cells. In contrast, MT1/2 immunofluorescence was prominent in proliferating satellite cells. Neuronal ferritin immunofluorescence declined but remained strong in hyperplastic satellite cells and residual nodules. Satellite cells in FA showed a larger number of mitochondria expressing ATB5B. Frataxin immunohistochemistry in FA confirmed small neuronal sizes, irregular distribution of reaction product beneath the plasma membrane, and enhanced expression in hyperplastic satellite cells. CONCLUSIONS The pool of total cellular Zn in normal DRG equals 124.8 μM, which is much higher than needed for the proper function of Zn ion-dependent proteins. It is likely that any disturbance of Zn buffering by Zip14 and MT3 causes mitochondrial damage and cell death. In contrast to Zn, sequestration of Fe in hyperplastic satellite cells may represent a protective mechanism. The changes in the cellular localization of Zn- and Fe-handling proteins suggest metal transfer from degenerating DRG neurons to activated satellite cells and connect neuronal metal dysmetabolism with the pathogenesis of the DRG lesion in FA.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
- Neurology Service, Veterans Affairs Medical Center, Albany, NY 12208, USA
- Department of Neurology, Albany Medical College, Albany, NY 12208, USA
- Department of Pathology, Albany Medical College, Albany, NY 12208, USA
| | - Erik C Kuntzsch
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Sarah T Bjork
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - R Liane Ramirez
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Joseph E Mazurkiewicz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Paul J Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|