1
|
Zhang Y, Chen P, Wang B, Tang X, Wei Y, Cao W, Tang L, Wang Z, Zhao N. Containing anti-PLA2R IgG antibody induces podocyte injury in idiopathic membranous nephropathy. Ren Fail 2023; 45:2271986. [PMID: 37905942 PMCID: PMC11001355 DOI: 10.1080/0886022x.2023.2271986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Idiopathic membranous nephropathy is widely recognized as an autoimmune kidney disease that is accompanied by the discovery of several autoantibodies, and the antibody subclass in the circulation of patients with iMN is mainly IgG. However, the direct pathogenic effect of the containing anti-PLA2R IgG antibody on podocytes is not clear.Method: A protein G affinity chromatography column was used to purify serum IgG antibodies. Containing anti-PLA2R IgG antibodies from iMN patients and IgG from healthy controls were also obtained. Based on the established in vitro podocyte culture system, purified IgG antibodies from the two groups were used to stimulate podocytes, and the expression of essential podocyte proteins (podocin), the levels of inflammatory cytokines in the cell supernatant, cytoskeletal disorders, and podocyte apoptosis were analyzed.Results: Compared with that in the normal IgG group, the expression of podocin and podocin mRNA was reduced (p = 0.016 and p = 0.005, respectively), the fluorescence intensity of podocin on the surface of podocytes was reduced, the cytoskeleton of podocytes was disordered and reorganized, and the ratio of podocyte apoptosis was increased in the iMN group (p = 0.008).Conclusion: The containing anti-PLA2R IgG antibody might have a direct damaging effect on podocytes in idiopathic membranous nephropathy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Baobao Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Xueqing Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Lijun Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Na Zhao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| |
Collapse
|
2
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
3
|
Tian J, Chang S, Ji H, Huang T, Guo H, Kang J, Wang Y, Zhou Y. The p70S6K/PI3K/MAPK feedback loop releases the inhibition effect of high-dose rapamycin on rat mesangial cell proliferation. Int J Immunopathol Pharmacol 2021; 35:20587384211000544. [PMID: 34034560 PMCID: PMC8161859 DOI: 10.1177/20587384211000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Glomerular mesangial cell (MC) proliferation is one of the causative factors of glomerular diseases and one of their prominent pathological features. Rapamycin can inhibit MC proliferation and slow the progression to chronic renal fibrosis. The present study was designed to observe the role of rapamycin in MC proliferation and to explore the mechanism by which rapamycin acts on Akt and MAPK/ERK1/2 pathways in mesangial cells. MTT assay and flow cytometry were used to evaluate the proliferation and the cell cycle phase of glomerular mesangial cells respectively. The mRNA expression level of p70S6K was detected by RT-qPCR. Western blotting was performed to determine p70S6K, PI3K/Akt, and PI3K/MAPK protein expression. We found that rapamycin could reduce mesangial cell proliferation and arrest the cell cycle in the G1 phase, however the inhibition effect of 1000 nmol/L rapamycin was not higher than that in the 100 nmol/L group. The results of western blotting showed that 1000 nmol/L rapamycin more significantly inhibited the phosphorylation of p70S6K than 100 nmol/L, suggesting there should be another signaling pathway that activates the proliferation of MCs. Moreover, our results revealed that 1000 nmol/L rapamycin led to Raf1-MEK1/2-ERK pathway activation through a p70S6K-PI3K-mediated feedback loop in MCs. This study demonstrated that high-dose rapamycin leads to ERK1/2 activation through a p70S6K/PI3K/MAPK feedback loop in rat MCs, thus reducing the inhibitory effect of rapamycin on MC proliferation.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixiu Guo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
4
|
Curcumin Improves the Renal Autophagy in Rat Experimental Membranous Nephropathy via Regulating the PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7069052. [PMID: 33204708 PMCID: PMC7654212 DOI: 10.1155/2020/7069052] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Membranous nephropathy (MN, also known as membranous glomerulopathy) is one of the many glomerular diseases causing nephrotic syndrome. The literature indicates that autophagy is associated with the homeostasis of podocytes in glomeruli. Curcumin, the main active component in turmeric, has drawn attention for its effective bioactivities against chronic kidney disease. The current study was aimed at assessing the effects of curcumin and exploring the underlying mechanism that mediates autophagy in an animal model of passive Heymann nephritis (PHN) in rats. Passive Heymann nephritis (PHN) was induced in male SD rats by intraperitoneal injection of anti-Fx1A serum. The rats were divided into 3 groups: control (n = 10, normal diet), model group (n = 10, 0.5% sodium carboxymethylcellulose), and curcumin (n = 10, 300 mg/kg/d). The kidney function and oxidative stress indicators were measured using commercial diagnostic kits, and the histomorphology of renal tissues was observed. The number of podocytes was measured by immunohistochemistry. Meanwhile, the autophagosomes in podocyte were analyzed by transmission electron microscopy and the immunofluorescence assay pointing to p62, an autophagic marker. Western blot analyzed the levels of apoptosis, autophagy, PI3K/AKT/mTOR, and Nrf2/HO-1 pathway-associated proteins. The total cholesterol (TC), triglycerides (TG), creatinine (Scr), blood urea nitrogen (BUN), urine volume, and urine albumin of PHN rats were significantly reduced by the administration of curcumin and attenuated renal histomorphological changes in model rats. Meanwhile, curcumin improved the oxidative stress response by decreasing MDA and increasing SOD, GSH, and CAT levels in the kidney of PHN rats. Furthermore, curcumin significantly ameliorated the podocyte loss, along with the fusion, and increased the autophagic vacuoles compared to the PHN control rats. In addition, curcumin downregulated the expression of Bax, Caspase-3, p62, PI3K, p-AKT, and p-mTOR proteins and upregulated the Bcl-2, beclin1, LC3, Nrf2, and HO-1 levels in this animal model. The results provide a scientific basis that curcumin could significantly alleviate the development of MN by inducing autophagy and alleviating renal oxidative stress through the PI3K/AKT/mTOR and Nrf2/HO-1 pathways.
Collapse
|
5
|
Liang S, Jin J, Lin B, Gong J, Li Y, He Q. Rapamycin Induces Autophagy and Reduces the Apoptosis of Podocytes Under a Stimulated Condition of Immunoglobulin A Nephropathy. Kidney Blood Press Res 2017; 42:177-187. [PMID: 28427080 DOI: 10.1159/000475484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Backgroud/Aims: The aim of this study was to investigate the potential renoprotective effect of rapamycin on the autophagy of podocytes treated with the supernatant of mesangial cells cultured with aggregated IgA1 (aIgA1) from immunoglobulin A nephropathy (IgAN) patients. METHODS Monomeric IgA1 (mIgA1) was isolated from the serum of IgAN patients or healthy volunteers, and then transformed to aIgA1 by heating. Subsequently, the aIgA1-mesangial cell supernatant was prepared by collecting the medium of mouse mesangial cells (MSC1097) cultured with aIgA1 (100 mg/L) from different IgAN patients or healthy volunteers for 48 h. Subsequently mouse podocytes (MPC5) were exposed to the supernatant of the aIgA1-mesangial cells for 24 h, using 100 mg/L aIgA1 from healthy volunteers as the control group or 100 mg/L aIgA1 from IgAN patients as the IgANs group, in RPMI 1640 medium. The MPC5 cells in the IgANs+Rap group were cultured with rapamycin (10 nmol/L) and the supernatant of MSC-1097 cells cultured with aIgA1 from IgAN patients in RPMI 1640 medium. Autophagy was assessed by western blot analysis (LC3, p62), electron microscopy, and immunofluorescence staining (LC3, p62, and CD63). The apoptosis of podocytes was evaluated by flow cytometry, and the expression of apoptosis-associated proteins cleaved-caspase-3 and caspase-3 were determined by western blot analysis. RESULTS Deficient autophagy, which was evident by decreased LC3-II and CD63 levels, caused accumulation of p62, and fewer autophagosomes were observed in the MPC5 cells cultured with the IgAN supernatant, along with stronger expression of cleaved caspase-3 and a higher apoptosis rate. Inhibition of autophagy was alleviated in the IgANs+Rap group. The LC3-II/LC3-I ratio increased by almost 30%, the accumulated p62 amount was reduced by 50%, and the number of autophagosomes per podocyte increased to about 7 times that of the IgAN groups. These results were confirmed by immunofluorescence staining. In addition, the apoptosis rate of MPC5 cells decreased from 19.88% in the IgAN group to 16.78% in the IgANs+Rap group, which was accompanied by a weaker expression level of cleaved caspase-3. CONCLUSIONS Rapamycin can reduce the apoptosis of podocytes by inducing autophagy in IgAN.
Collapse
|
6
|
Liu D, Liu Y, Chen G, He L, Tang C, Wang C, Yang D, Li H, Dong Z, Liu H. Rapamycin Enhances Repressed Autophagy and Attenuates Aggressive Progression in a Rat Model of IgA Nephropathy. Am J Nephrol 2017; 45:293-300. [PMID: 28237991 DOI: 10.1159/000456039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has been considered to be the most frequent form of primary glomerulonephritis that occurs worldwide with a variety of factors involved in its occurrence and development. The impact of autophagy in IgAN, however, remains partially unclear. This study was designed to investigate the effects of rapamycin in an IgAN model. METHOD After establishing an IgAN rat model, SD rats were divided into 4 groups: control, control + rapamycin, IgAN, IgAN + rapamycin. Proteinuria and the pathological changes and the level of autophagy of kidney were texted. Identify the expression of phosphorylation and total mammalian target of rapamycin (mTOR) and s6k1 as well as cyclin D1 in the kidney of rats through Western blot and immunohistochemistry. RESULTS With rapamycin treatment, we observed a significant reduction in the progression of proteinuria as well as alleviation of pathological lesions in IgAN rats. Besides, autophagy was inhibited, while the mTOR/S6k1 pathway was activated and expression of cyclin D1 was increased in IgAN. Rapamycin treatment increased autophagy and decreased the expression of cyclin D1. CONCLUSION These results may suggest that mTOR-mediated autophagy inhibition may result in mesangial cell proliferation in IgAN.
Collapse
Affiliation(s)
- Di Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Blood Purification Center in 2nd Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification in Hunan, Changsha, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fernandes-Silva G, Ivani de Paula M, Rangel ÉB. mTOR inhibitors in pancreas transplant: adverse effects and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:367-385. [DOI: 10.1080/17425255.2017.1239708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gabriel Fernandes-Silva
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
| | - Mayara Ivani de Paula
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
| | - Érika B. Rangel
- Universidade Federal de São Paulo/Hospital do Rim e Hipertensão, Nephrology Department, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016; 12:587-609. [PMID: 27477490 DOI: 10.1038/nrneph.2016.108] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.
Collapse
|
9
|
Liu Y, Long L, Yuan F, Liu F, Liu H, Peng Y, Sun L, Chen G. High glucose-induced Galectin-1 in human podocytes implicates the involvement of Galectin-1 in diabetic nephropathy. Cell Biol Int 2014; 39:217-23. [PMID: 25182410 DOI: 10.1002/cbin.10363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/31/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Yinghong Liu
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
- Department of Pathology; University of lowa; Iowa City Iowa USA
| | - Luping Long
- Department of Nephrology; Yiyang Central Hospital; Hunan P. R. China
| | - Fang Yuan
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| | - Fuyou Liu
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| | - Hong Liu
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| | - Youming Peng
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| | - Lin Sun
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| | - Guochun Chen
- Department of Nephrology; Second Xiangya Hospital; Central South University; Changsha Hunan P. R. China
| |
Collapse
|
10
|
Liu W, Qiao F, Liu H, Gong X, Shi X, Li Y, Wu Y. Low molecular weight heparin improves proteinuria in rats with L-NAME induced preeclampsia by decreasing the expression of nephrin, but not podocin. Hypertens Pregnancy 2014; 34:24-35. [PMID: 25181538 DOI: 10.3109/10641955.2014.951655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE We investigated the relationship between proteinuria in L-NAME induced preeclampsia and the expression of nephrin and podocin, and the effect of low-molecular-weight-heparin (LMWH) on proteinuria in rats. METHODS We detected nephrin and podocin expression of kidneys of pregnant rats after L-NAME and after LMWH intervening pregnant rats. RESULTS Glomerular nephrin expression in L-NAME induced preeclampsia significantly decreased, but not podocin. Nephrin was relatively increased after LMWH intervention and this was accompanied by a decrease in proteinuria. CONCLUSION We demonstrate that down-regulation of nephrin is involved in L-NAME induced proteinuria, and that LMWH reduces proteinuria by up-regulation of neprhin.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , P.R. China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yi qi qing re gao attenuates podocyte injury and inhibits vascular endothelial growth factor overexpression in puromycin aminonucleoside rat model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:375986. [PMID: 24963322 PMCID: PMC4055581 DOI: 10.1155/2014/375986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022]
Abstract
Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression.
Collapse
|