1
|
Exner R, Cortezon-Tamarit F, Ge H, Pourzand C, Pascu SI. Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds. ACS BIO & MED CHEM AU 2022; 2:642-654. [PMID: 36573095 PMCID: PMC9782398 DOI: 10.1021/acsbiomedchemau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.
Collapse
Affiliation(s)
- Rüdiger
M. Exner
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | | | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | - Charareh Pourzand
- Department
of Pharmacy and Pharmacology, University
of Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,
| |
Collapse
|
2
|
Meher N, Ashley GW, Bidkar AP, Dhrona S, Fong C, Fontaine SD, Beckford Vera DR, Wilson DM, Seo Y, Santi DV, VanBrocklin HF, Flavell RR. Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50569-50582. [PMID: 36318757 PMCID: PMC9673064 DOI: 10.1021/acsami.2c15095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 05/05/2023]
Abstract
Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.
Collapse
Affiliation(s)
- Niranjan Meher
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Gary W. Ashley
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Anil P. Bidkar
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Suchi Dhrona
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Cyril Fong
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | | | - Denis R. Beckford Vera
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Daniel V. Santi
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Henry F. VanBrocklin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
3
|
Derks YHW, Rijpkema M, Amatdjais-Groenen HIV, Loeff CC, de Roode KE, Kip A, Laverman P, Lütje S, Heskamp S, Löwik DWPM. Strain-Promoted Azide-Alkyne Cycloaddition-Based PSMA-Targeting Ligands for Multimodal Intraoperative Tumor Detection of Prostate Cancer. Bioconjug Chem 2022; 33:194-205. [PMID: 34957825 PMCID: PMC8778659 DOI: 10.1021/acs.bioconjchem.1c00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Indexed: 01/18/2023]
Abstract
Strain-promoted azide-alkyne cycloaddition (SPAAC) is a straightforward and multipurpose conjugation strategy. The use of SPAAC to link different functional elements to prostate-specific membrane antigen (PSMA) ligands would facilitate the development of a modular platform for PSMA-targeted imaging and therapy of prostate cancer (PCa). As a first proof of concept for the SPAAC chemistry platform, we synthesized and characterized four dual-labeled PSMA ligands for intraoperative radiodetection and fluorescence imaging of PCa. Ligands were synthesized using solid-phase chemistry and contained a chelator for 111In or 99mTc labeling. The fluorophore IRDye800CW was conjugated using SPAAC chemistry or conventional N-hydroxysuccinimide (NHS)-ester coupling. Log D values were measured and PSMA specificity of these ligands was determined in LS174T-PSMA cells. Tumor targeting was evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wild-type tumors using μSPECT/CT imaging, fluorescence imaging, and biodistribution studies. SPAAC chemistry increased the lipophilicity of the ligands (log D range: -2.4 to -4.4). In vivo, SPAAC chemistry ligands showed high and specific accumulation in s.c. LS174T-PSMA tumors up to 24 h after injection, enabling clear visualization using μSPECT/CT and fluorescence imaging. Overall, no significant differences between the SPAAC chemistry ligands and their NHS-based counterparts were found (2 h p.i., p > 0.05), while 111In-labeled ligands outperformed the 99mTc ligands. Here, we demonstrate that our newly developed SPAAC-based PSMA ligands show high PSMA-specific tumor targeting. The use of click chemistry in PSMA ligand development opens up the opportunity for fast, efficient, and versatile conjugations of multiple imaging moieties and/or drugs.
Collapse
Affiliation(s)
- Yvonne H. W. Derks
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | | | - Cato C. Loeff
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Kim E. de Roode
- Organic
Chemistry, Radboud University Nijmegen,
Institute for Molecules and Materials, 6525XZ Nijmegen, The Netherlands
| | - Annemarie Kip
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Peter Laverman
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Susanne Lütje
- Department
of Nuclear Medicine, University Hospital
Bonn, 53127 Bonn, Germany
| | - Sandra Heskamp
- Department
of Medical Imaging, Nuclear Medicine, Radboud
university medical center, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Dennis W. P. M. Löwik
- Organic
Chemistry, Radboud University Nijmegen,
Institute for Molecules and Materials, 6525XZ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Machulkin AE, Shafikov RR, Uspenskaya AA, Petrov SA, Ber AP, Skvortsov DA, Nimenko EA, Zyk NU, Smirnova GB, Pokrovsky VS, Abakumov MA, Saltykova IV, Akhmirov RT, Garanina AS, Polshakov VI, Saveliev OY, Ivanenkov YA, Aladinskaya AV, Finko AV, Yamansarov EU, Krasnovskaya OO, Erofeev AS, Gorelkin PV, Dontsova OA, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. J Med Chem 2021; 64:4532-4552. [PMID: 33822606 DOI: 10.1021/acs.jmedchem.0c01935] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Anastasia A Uspenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Stanislav A Petrov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Anton P Ber
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Ekaterina A Nimenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay U Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia.,RUDN University, Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Rauf T Akhmirov
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oleg Y Saveliev
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia.,Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa 450054, Russian Federation
| | - Anastasiya V Aladinskaya
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Emil U Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena S Khazanova
- Izvarino Pharma LLC, v. Vnukovskoe, Vnukovskoe sh., 5th km., Building 1, Moscow 108817, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
5
|
Derks YH, Rijpkema M, Amatdjais-Groenen HI, Kip A, Franssen GM, Sedelaar JPM, Somford DM, Simons M, Laverman P, Gotthardt M, Löwik DWPM, Lütje S, Heskamp S. Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer. Theranostics 2021; 11:1527-1541. [PMID: 33408764 PMCID: PMC7778589 DOI: 10.7150/thno.52166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Incomplete resection of prostate cancer (PCa) occurs in 15%-50% of PCa patients. Disease recurrence negatively impacts oncological outcome. The use of radio-, fluorescent-, or photosensitizer-labeled ligands to target the prostate-specific membrane antigen (PSMA) has become a well-established method for the detection and treatment of PCa. Methods: Here, we developed and characterized multimodal [111In]In-DOTA(GA)-IRDye700DX-PSMA ligands, varying in their molecular composition, for use in intraoperative radiodetection, fluorescence imaging and targeted photodynamic therapy of PCa lesions. PSMA-specificity of these ligands was determined in xenograft tumor models and on fresh human PCa biopsies. Results: Ligand structure optimization showed that addition of the photosensitizer (IRDye700DX) and additional negative charges significantly increased ligand uptake in PSMA-expressing tumors. Moreover, an ex vivo incubation study on human tumor biopsies confirmed the PSMA-specificity of these ligands on human samples, bridging the gap to the clinical situation. Conclusion: We developed a novel PSMA-targeting ligand, optimized for multimodal image-guided PCa surgery combined with targeted photodynamic therapy.
Collapse
|
6
|
Derks YH, Löwik DWPM, Sedelaar JPM, Gotthardt M, Boerman OC, Rijpkema M, Lütje S, Heskamp S. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Am J Cancer Res 2019; 9:6824-6839. [PMID: 31660071 PMCID: PMC6815946 DOI: 10.7150/thno.36739] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 11/15/2022] Open
Abstract
Despite recent improvements in imaging and therapy, prostate cancer (PCa) still causes substantial morbidity and mortality. In surgical treatment, incomplete resection of PCa and understaging of possible undetected metastases may lead to disease recurrence and consequently poor patient outcome. To increase the chance of accurate staging and subsequently complete removal of all cancerous tissue, prostate specific membrane antigen (PSMA) targeting agents may provide the surgeon an aid for the intraoperative detection and resection of PCa lesions. Two modalities suitable for this purpose are radionuclide detection, which allows sensitive intraoperative localization of tumor lesions with a gamma probe, and fluorescence imaging, allowing tumor visualization and delineation. Next to fluorescence, use of photosensitizers may enable intraoperative targeted photodynamic therapy to eradicate remaining tumor lesions. Since radiodetection and optical imaging techniques each have their own strengths and weaknesses, a combination of both modalities could be of additional value. Here, we provide an overview of recent preclinical and clinical advances in PSMA-targeted radio- and fluorescence-guided surgery of PCa.
Collapse
|
7
|
Ivanenkov YA, Machulkin AE, Garanina AS, Skvortsov DA, Uspenskaya AA, Deyneka EV, Trofimenko AV, Beloglazkina EK, Zyk NV, Koteliansky VE, Bezrukov DS, Aladinskaya AV, Vorobyeva NS, Puchinina MM, Riabykh GK, Sofronova AA, Malyshev AS, Majouga AG. Synthesis and biological evaluation of Doxorubicin-containing conjugate targeting PSMA. Bioorg Med Chem Lett 2019; 29:1246-1255. [DOI: 10.1016/j.bmcl.2019.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
|
8
|
Vorlová B, Sedlák F, Kašpárek P, Šrámková K, Malý M, Zámečník J, Šácha P, Konvalinka J. A novel PSMA/GCPII-deficient mouse model shows enlarged seminal vesicles upon aging. Prostate 2019; 79:126-139. [PMID: 30256431 DOI: 10.1002/pros.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is an important diagnostic and therapeutic target in prostate cancer. PSMA/GCPII is also expressed in many healthy tissues, but its function has only been established in the brain and small intestine. Several research groups have attempted to produce PSMA/GCPII-deficient mice to study the physiological role of PSMA/GCPII in detail. The outcomes of these studies differ dramatically, ranging from embryonic lethality to production of viable PSMA/GCPII-deficient mice without any obvious phenotype. METHODS We produced PSMA/GCPII-deficient mice (hereafter also referred as Folh1-/- mice) by TALEN-mediated mutagenesis on a C57BL/6NCrl background. Using Western blot and an enzyme activity assay, we confirmed the absence of PSMA/GCPII in our Folh1-/- mice. We performed anatomical and histopathological examination of selected tissues with a focus on urogenital system. We also examined the PSMA/GCPII expression profile within the mouse urogenital system using an enzyme activity assay and confirmed the presence of PSMA/GCPII in selected tissues by immunohistochemistry. RESULTS Our Folh1-/- mice are viable, breed normally, and do not show any obvious phenotype. Nevertheless, aged Folh1-/- mice of 69-72 weeks exhibit seminal vesicle dilation, which is caused by accumulation of luminal fluid. This phenotype was also observed in Folh1+/- mice; the overall difference between our three cohorts (Folh1-/- , Folh1+/- , and Folh1+/+ ) was highly significant (P < 0.002). Of all studied tissues of the mouse urogenital system, only the epididymis appeared to have a physiologically relevant level of PSMA/GCPII expression. Additional experiments demonstrated that PSMA/GCPII is also present in the human epididymis. CONCLUSIONS In this study, we provide the first evidence characterizing the reproductive tissue phenotype of PSMA/GCPII-deficient mice. These findings will help lay the groundwork for future studies to reveal PSMA/GCPII function in human reproduction.
Collapse
Affiliation(s)
- Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Petr Kašpárek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Karolína Šrámková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Marek Malý
- National Institute of Public Health, Prague 10, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
9
|
Gupta P, Wentland JA, Leal M, Ma D, Roach R, Esparza A, King L, Spilker ME, Bagi C, Winkelmann CT, Giddabasappa A. Assessment of near-infrared fluorophores to study the biodistribution and tumor targeting of an IL13 receptor α2 antibody by fluorescence molecular tomography. Oncotarget 2017; 8:57231-57245. [PMID: 28915667 PMCID: PMC5593638 DOI: 10.18632/oncotarget.19569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/03/2017] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging using radiolabels is a common technique used to study the biodistribution of biologics. Due to the limited shelf-life of radiolabels and the requirements of specialized labs, non-invasive optical imaging is an attractive alternative for preclinical studies. Previously, we demonstrated the utility of fluorescence molecular tomography (FMT) an optical imaging modality in evaluating the biodistribution of antibody-drug conjugates. As FMT is a relatively new technology, few fluorophores have been validated for in vivo imaging. The goal of this study was to characterize and determine the utility of near-infrared (NIR) fluorophores for biodistribution studies using interleukin-13 receptor subunit alpha-2 antibody (IL13Rα2-Ab). Eight fluorophores (ex/em: 630/800 nm) with an N-hydroxysuccinimide (NHS) linker were evaluated for Ab conjugation. The resulting antibody-fluorophore (Ab-F) conjugates were evaluated in vitro for degree of conjugation, stability and target-binding, followed by in vivo/ex vivo FMT imaging to determine biodistribution in a xenograft model. The Ab-F conjugates (except Ab-DyLight800) showed good in vitro stability and antigen binding. All Ab-F conjugates (except for Ab-BOD630) resulted in a quantifiable signal in vivo and had similar biodistribution profiles, with peak tumor accumulation between 6 and 24 h post-injection. In vivo/ex vivo FMT imaging showed 17–34% ID/g Ab uptake by the tumor at 96 h. Overall, this is the first study to characterize the biodistribution of an Ab using eight NIR fluorophores. Our results show that 3-dimensional optical imaging is a valuable technology to understand biodistribution and targeting, but a careful selection of the fluorophore for each Ab is warranted.
Collapse
Affiliation(s)
- Parul Gupta
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| | - Jo-Ann Wentland
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Mauricio Leal
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Dangshe Ma
- Oncology Research Unit, Pfizer, Inc., Pearl River, NY, USA.,Current affiliation: Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Rachel Roach
- Center for Therapeutic Innovation, Pfizer, Inc., La Jolla, CA, USA
| | | | - Lindsay King
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Mary E Spilker
- Pharmacokinetics and Drug Metabolism, Pfizer, Inc., New York NY, USA
| | - Cedo Bagi
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| | | | - Anand Giddabasappa
- Global Science and Technology, Comparative Medicine, Pfizer, Inc., La Jolla, CA, USA
| |
Collapse
|
10
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
11
|
Rozet F, Roumeguère T, Spahn M, Beyersdorff D, Hammerer P. Non-metastatic castrate-resistant prostate cancer: a call for improved guidance on clinical management. World J Urol 2016; 34:1505-1513. [DOI: 10.1007/s00345-016-1803-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
|
12
|
Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, Chen Y, Yang X, Cho SY, Nimmagadda S, Pomper MG. Prostate-specific membrane antigen as a target for cancer imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2015; 59:241-68. [PMID: 26213140 PMCID: PMC4859214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers.
Collapse
Affiliation(s)
- A P Kiess
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA -
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tykvart J, Schimer J, Jančařík A, Bařinková J, Navrátil V, Starková J, Šrámková K, Konvalinka J, Majer P, Šácha P. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II. J Med Chem 2015; 58:4357-63. [PMID: 25923815 DOI: 10.1021/acs.jmedchem.5b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells.
Collapse
Affiliation(s)
- Jan Tykvart
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Jiří Schimer
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Andrej Jančařík
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Jitka Bařinková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Václav Navrátil
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Jana Starková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Karolína Šrámková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Jan Konvalinka
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Pavel Majer
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Pavel Šácha
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| |
Collapse
|
14
|
Tykvart J, Schimer J, Bařinková J, Pachl P, Poštová-Slavětínská L, Majer P, Konvalinka J, Šácha P. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg Med Chem 2014; 22:4099-108. [PMID: 24954515 DOI: 10.1016/j.bmc.2014.05.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/21/2022]
Abstract
Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure-activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII.
Collapse
Affiliation(s)
- Jan Tykvart
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Jiří Schimer
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Jitka Bařinková
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic
| | - Petr Pachl
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4, Czech Republic
| | - Lenka Poštová-Slavětínská
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic
| | - Pavel Majer
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic
| | - Jan Konvalinka
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Pavel Šácha
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10 Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic.
| |
Collapse
|