1
|
Yi YJ, Jia XH, Zhu C, Wang JY, Chen JR, Wang H, Li YJ. Solanine reverses multidrug resistance in human myelogenous leukemia K562/ADM cells by downregulating MRP1 expression. Oncol Lett 2018; 15:10070-10076. [PMID: 29928376 DOI: 10.3892/ol.2018.8563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) in leukemia cells is a major obstacle to chemotherapeutic treatment. High expression and constitutive activation of multidrug resistance protein 1 (MRP1) has been associated with the development of resistance to anticancer drugs in a number of tumor types. The activity of c-Jun N-terminal kinase 1 (JNK1) is associated with the occurrence of MDR and MRP1 expression. The present study aimed to investigate the ability of solanine to resensitize the Adriamycin® (ADR)-resistant human myelogenous leukemia cell line K562/ADM to ADR. Results of the Cell Counting Kit-8 assay demonstrated that solanine inhibited K562/ADM cell proliferation. K562/ADM cell sensitivity to ADR was increased following treatment with solanine, indicated by increased intracellular accumulation of ADR. Western blotting demonstrated that treatment with solanine led to reduced MRP1 protein expression, suggesting that solanine-induced ADR accumulation is due to the downregulation of MRP1 expression. Solanine-mediated MRP1 downregulation was observed to be dependent on the JNK signaling pathway. In conclusion, the results of the present study suggest that solanine reverses MDR in K562/ADM cells and may represent a novel therapeutic agent for the treatment of human myelogenous leukemia.
Collapse
Affiliation(s)
- Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Cong Zhu
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
2
|
Ma J, Lv Z, Liu X, Liu X, Xu W. MG‑132 reverses multidrug resistance by activating the JNK signaling pathway in FaDu/T cells. Mol Med Rep 2018; 18:1820-1825. [PMID: 29901180 DOI: 10.3892/mmr.2018.9138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to cancer therapy. MG‑132 has been identified to be effective against MDR in several types of cancer. However, the mechanism of MG‑132 in head and neck squamous cell carcinomas remains unknown. Based on our previous study, the present detected P‑gp and P‑gp expression in hypopharyngeal carcinoma FaDu cells, revealing that their expression was lower than that observed in the MDR cell line FaDu/T. To reverse the MDR of FaDu/T cells, the present study introduced MG‑132 and demonstrated that the high expression of P‑gp/P‑gp in FaDu/T cells was attenuated in a time‑dependent manner. MG‑132 also strengthened the sensitivity of FaDu/T cells to multidrugs. c‑Jun N‑terminal kinase (JNK) activation was further observed in FaDu/T cells. However, P‑gp/P‑gp did not decrease when FaDu/T cells were pretreated with SP600125. These results indicated that MG‑132 reversed the MDR of hypopharyngeal carcinoma by downregulating P‑gp/P‑gp, and the underlying mechanism may be associated with the activation the of the JNK signaling pathway.
Collapse
Affiliation(s)
- Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Zhou P, Zhang R, Wang Y, Xu D, Zhang L, Qin J, Su G, Feng Y, Chen H, You S, Rui W, Liu H, Chen S, Chen H, Wang Y. Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget 2017; 8:111144-111160. [PMID: 29340044 PMCID: PMC5762312 DOI: 10.18632/oncotarget.22676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy that is often resistant to therapy. Nowadays, chemotherapy is still one of the main methods for the treatment of ESCC. However, the multidrug resistance (MDR)-mediated chemotherapy resistance is one of the leading causes of death. Exploring agents able to reverse MDR, which thereby increase the sensitivity with clinical first-line chemotherapy drugs, could significantly improve cancer treatment. Cepharanthine hydrochloride (CEH) has the ability to reverse the MDR in ESCC and the mechanism involved have not been reported. The aim of the study was to investigate the potential of CEH to sensitize chemotherapeutic drugs in ESCC and explore the underlying mechanisms by in vitro and in vivo studies. Our data demonstrated that CEH significantly inhibited ESCC cell proliferation in a dose-dependent manner, induced G2/M phase cell cycle arrest and apoptosis, and increased the sensitivity of cell lines resistant to cisplatin (cDDP). Mechanistically, CEH inhibited ESCC cell growth and induced apoptosis through activation of c-Jun, thereby inhibiting the expression of P-gp, and enhancing p21 expression via activation of the p53 signaling pathway. In this study, we observed that growth of xenograft tumors derived from ESCC cell lines in nude mice was also significantly inhibited by combination therapy. To our knowledge, we demonstrate for the first time that CEH is a potentially effective MDR reversal agent for ESCC, based on downregulation of the mRNA expression of MDR1 and P-gp. Together, these results reveal emphasize CEH putative role as a resistance reversal agent for ESCC.
Collapse
Affiliation(s)
- Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, P. R. China
| | - Ying Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Dandan Xu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong, P. R. China
| | - Li Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, P. R. China
| | - Jinhong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Guifeng Su
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Yue Feng
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Hongce Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Siyuan You
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Wen Rui
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Huizhong Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shanxi, P. R. China
| | - Suhong Chen
- Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong, P. R. China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| |
Collapse
|
4
|
Deng Y, Wu W, Ye S, Wang W, Wang Z. Determination of cepharanthine in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. PHARMACEUTICAL BIOLOGY 2017; 55:1775-1779. [PMID: 28521597 PMCID: PMC6130670 DOI: 10.1080/13880209.2017.1328446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Cepharanthine (CPA) has been reported to possess a wide range of pharmacological activities. OBJECTIVE This study investigates the pharmacokinetic characteristics after oral or intravenous administration of CPA by using a sensitive and rapid LC-MS/MS method. MATERIALS AND METHODS A sensitive and rapid LC-MS/MS method was developed for the determination of CPA in Sprague-Dawley rat plasma. Twelve rats were equally randomized into two groups, including the intravenous group (1 mg/kg) and the oral group (10 mg/kg). Blood samples (250 μL) were collected at designated time points and determined using this method. The pharmacokinetic parameters were calculated. RESULTS The calibration curve was linear within the range of 0.1-200 ng/mL (r = 0.999) with the lower limit of quantification at 0.1 ng/mL. After 1 mg/kg intravenous injection, the concentration of CPA reached a maximum of 153.17 ± 16.18 ng/mL and the t1/2 was 6.76 ± 1.21 h. After oral administration of 10 mg/kg of CPA, CPA was not readily absorbed and reached Cmax 46.89 ± 5.25 ng/mL at approximately 2.67 h. The t1/2 was 11.02 ± 1.32 h. The absolute bioavailability of CPA by oral route was 5.65 ± 0.35%, and the bioavailability was poor. DISCUSSION AND CONCLUSIONS The results indicate that the bioavailability of CPA was poor in rats, and further research should be conducted to investigate the reason for its poor bioavailability and address this problem.
Collapse
Affiliation(s)
- Yingbin Deng
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijun Wu
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sunzhi Ye
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyi Wang
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- CONTACT Zhiyi WangDepartment of Emergency Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou325027, China
| |
Collapse
|
5
|
Huang CZ, Wang YF, Zhang Y, Peng YM, Liu YX, Ma F, Jiang JH, Wang QD. Cepharanthine hydrochloride reverses P‑glycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol Rep 2017; 38:2558-2564. [PMID: 28791369 DOI: 10.3892/or.2017.5879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignant tumors. The major obstacle to treatment success is multidrug resistance (MDR) to chemotherapy drugs. Cepharanthine hydrochloride (CH), a natural alkaloid-derived compound, has shown MDR reversal potency in several tumor cell lines; however, the molecular mechanism is not entirely known. In the present study, we assessed whether CH sensitized malignant cells to chemotherapy drugs in ovarian cancer and explored the relevant mechanism. We found that CH reduced the IC50 value of paclitaxel and increased intracellular rhodamine-123 accumulation in human ovarian cancer A2780/Taxol cells in a concentration-dependent manner. Reverse transcription polymerase chain reaction and western blot assay demonstrated that CH inhibited MDR1 expression as indicated by reduced mRNA and protein levels in A2780/Taxol cells. In addition, the inhibitory effect was strengthened after CH was combined with the specific PI3K/Akt signaling pathway inhibitor LY294002. Furthermore, p‑Akt expression decreased gradually with the concentration of CH (2, 4 and 8 µM). Taken together, these findings indicated that CH reversed P‑glycoprotein-mediated MDR in A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen-Zheng Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ya-Feng Wang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yan Zhang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - You-Mei Peng
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi-Xian Liu
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Ma
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jin-Hua Jiang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing-Duan Wang
- Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
Wang PP, Luan JJ, Xu WK, Wang L, Xu DJ, Yang CY, Zhu YH, Wang YQ. Astragaloside IV downregulates the expression of MDR1 in Bel-7402/FU human hepatic cancer cells by inhibiting the JNK/c-Jun/AP-1 signaling pathway. Mol Med Rep 2017; 16:2761-2766. [DOI: 10.3892/mmr.2017.6924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
|
7
|
Xia X, Cole SPC, Cai T, Cai Y. Effect of traditional Chinese medicine components on multidrug resistance in tumors mediated by P-glycoprotein. Oncol Lett 2017; 13:3989-3996. [PMID: 28588693 PMCID: PMC5452909 DOI: 10.3892/ol.2017.5976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure. It occurs when an organism is resistant to one type of drug, but also develops resistance to other drugs with different structures and targets. There is a high incidence of MDR in cancer chemotherapy, therefore, finding an effective and non-toxic MDR reversal agent is an important goal, particularly for P-glycoprotein-mediated MDR in cancer. Improvements continue to be made to the status and understanding of traditional Chinese medicine (TCM), due to the advantages of low toxicity and relatively minor side effects. Therefore TCM is currently being used in the treatment of various types of diseases. In recent years, numerous components of TCM have been identified to be effective in reversing MDR by downregulating expression of the drug transporter membrane protein, recovering changes in enzymes involved in detoxification and metabolism and repairing the cell apoptosis pathway. The present study summarizes the anticancerous properties and MDR reversing components of traditional medicinal plants commonly used in the treatment of cancer.
Collapse
Affiliation(s)
- Xi Xia
- School of Pharmacy, Institute of Oncology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Susan P C Cole
- Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Tiange Cai
- School of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yu Cai
- School of Pharmacy, Institute of Oncology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
8
|
Retracted: Downregulation of MDR1 Gene by Cepharanthine Hydrochloride Is Related to the Activation of c-Jun/JNK in K562/ADR Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2016:4729643. [PMID: 28050561 PMCID: PMC5165144 DOI: 10.1155/2016/4729643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
|
9
|
SH3GL1 inhibition reverses multidrug resistance in colorectal cancer cells by downregulation of MDR1/P-glycoprotein via EGFR/ERK/AP-1 pathway. Tumour Biol 2016; 37:12153-12160. [DOI: 10.1007/s13277-016-5092-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/15/2016] [Indexed: 01/14/2023] Open
|
10
|
Guizhi Fuling Wan, a Traditional Chinese Herbal Formula, Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Inactivation of the PI3K/AKT/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4651949. [PMID: 27293459 PMCID: PMC4887624 DOI: 10.1155/2016/4651949] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022]
Abstract
The aim of the study was to explore the possible mechanisms that Guizhi Fuling Wan (GFW) enhances the sensitivity of the SKOV3/DDP ovarian cancer cells and the resistant xenograft tumours to cisplatin. Rat medicated sera containing GFW were prepared by administering GFW to rats, and the primary bioactive constituents of the sera were gallic acid, paeonol, and paeoniflorin analysed by HPLC/QqQ MS. Cell counting kit-8 analysis was shown that coincubation of the sera with cisplatin/paclitaxel enhanced significantly the cytotoxic effect of cisplatin or paclitaxel in SKOV3/DDP cells. The presence of the rat medicated sera containing GFW resulted in an increase in rhodamine 123 accumulation by flow cytometric assays and a decrease in the protein levels of P-gp, phosphorylation of AKT at Ser473, and mTOR in a dose-dependent manner in SKOV3/DDP cells by western blot analysis, but the sera had no effect on the protein levels of PI3K p110α and total AKT. The low dose of GFW enhanced the anticancer efficacy of cisplatin and paclitaxel treatment in resistant SKOV3/DDP xenograft tumours. GFW could sensitize cisplatin-resistant SKOV3/DDP cells by inhibiting the protein level and function of P-gp, which may be medicated through inactivation of the PI3K/AKT/mTOR pathway.
Collapse
|
11
|
Han L, Bian H, Ouyang J, Bi Y, Yang L, Ye S. Wenyang Huazhuo Tongluo formula, a Chinese herbal decoction, improves skin fibrosis by promoting apoptosis and inhibiting proliferation through down-regulation of survivin and cyclin D1 in systemic sclerosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:69. [PMID: 26897030 PMCID: PMC4761193 DOI: 10.1186/s12906-016-1056-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Background Fibrosis is a major contributor to systemic sclerosis (SSc)-related morbidity, and rapid, progressive skin involvement predicts later mortality. Western medicine therapies for SSc cannot produce satisfactory effects currently, while Traditional Chinese Medicine (TCM), such as the Wenyang Huazhuo Tongluo (WYHZTL) formula, a Chinese herbal decoction, has shown amazing anti-fibrosis efficacy on SSc in clinical applications. This study is aiming to investigate the anti-fibrotic mechanism of WYHZTL formula for the treatment of SSc. Methods Fibroblasts from primary culture of skin lesions of SSc patients were exposed to rat medicated sera containing WYHZTL or XAV939, a small-molecule inhibitor of both tankyrase 1/2 and Wnt/β-catenin pathway. Cell counting kit-8 assay and Annexin V FITC/PI apoptosis kit were used to analyze cell proliferation and apoptosis in fibroblasts, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of cyclin D1 and survivin. Results After 28, 48 and 72 h of incubation, the proliferative ability of the fibroblasts cells was obviously reduced by the sera containing WYHZTL compared with that in the control group; the percentage of apoptotic cell population in the sera containing WYHZTL treated fibroblasts cells was significantly higher than that in those treated with the control sera, and was about similar to that in those treated with XAV939. The sera containing WYHZTL could down-regulate both mRNA and protein levels of cyclin D1 and survivin, compared with the control group. Conclusions The present study demonstrates the antiproliferative and pro-apoptotic actions of WYHZTL formula against fibroblasts and the effect may be related to the down-regulation of mRNA and protein levels of cyclin D1 and survivin in SSc.
Collapse
|
12
|
Shao Y, Wang C, Hong Z, Chen Y. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats. J Neurochem 2016; 136:1096-105. [PMID: 26677173 DOI: 10.1111/jnc.13498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Yiye Shao
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| | - Cuicui Wang
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| | - Zhen Hong
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
- Department of Neurology; Huashan Hospital; Fudan University; Shanghai China
| | - Yinghui Chen
- Department of Neurology; Jinshan Hospital; Fudan University; Shanghai China
- Department of Neurology; Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
13
|
Zhang L, Zhang Z, Wang J, Chen Y, Chen F, Lin Y, Zhu X. Potential anti-MDR agents based on the podophyllotoxin scaffold: synthesis and antiproliferative activity evaluation against chronic myeloid leukemia cells by activating MAPK signaling pathways. RSC Adv 2016. [DOI: 10.1039/c5ra24272j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound 9k exhibited excellent cytotoxicity, induced apoptosis and G2/M cell cycle arrest, downregulated Pgp expression and up-regulated the expression of p-ERK1/2, p-JNK and p-p38 in K562/ADR cells.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Zeguo Zhang
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Jing Wang
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Yongzheng Chen
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Fan Chen
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Ya Lin
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| | - Xinling Zhu
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
- P.R.China
| |
Collapse
|
14
|
Tang Z, Zhang W, Wan C, Xu G, Nie X, Zhu X, Xia N, Zhao Y, Wang S, Cui S, Wang C. TRAM1 protect HepG2 cells from palmitate induced insulin resistance through ER stress-JNK pathway. Biochem Biophys Res Commun 2015; 457:578-84. [PMID: 25600807 DOI: 10.1016/j.bbrc.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. Chronic endoplasmic reticulum (ER) stress is a major contributor to obesity-induced insulin resistance in the liver. With high-fat feeding (HFD), FFAs can activate chronic endoplasmic reticulum (ER) stress in target tissues, initiating negative crosstalk between FFAs and insulin signaling. However, the molecular link between insulin resistance and ER stress remains to be identified. We here reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, was involved in the onset of insulin resistance in hepatocytes. TRAM1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion of TRAM1 led to hyperactivation of CHOP and GRP78, and the activation of downstream JNK pathway. Given the fact that the activation of ER stress played a facilitating role in insulin resistance, the phosphorylation of Akt and GSK-3β was also analyzed. We found that depletion of TRAM1 markedly attenuated the phosphorylation of Akt and GSK-3β in the cells. Moreover, application with JNK inhibitor SP600125 reversed the effect of TRAM1 interference on Akt phosphorylation. The accumulation of lipid droplets and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt. Glucose uptake assay indicated that knocking down TRAM1 augmented PA-induced down-regulation of glucose uptake, and inhibition of JNK using SP600125 could block the effect of TRAM1 on glucose uptake. These data implicated that TRAM1 might protect HepG2 cells against PA-induced insulin resistance through alleviating ER stress.
Collapse
Affiliation(s)
- Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Wanlu Zhang
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Chunhua Wan
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Guangfei Xu
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xiaoke Nie
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xiaohui Zhu
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Nana Xia
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yun Zhao
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Suxin Wang
- Department of Pathogen Biology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Cuifang Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|