1
|
Wang TH, Shen YW, Chen HY, Chen CC, Lin NC, Shih YH, Hsia SM, Chiu KC, Shieh TM. Arecoline Induces ROS Accumulation, Transcription of Proinflammatory Factors, and Expression of KRT6 in Oral Epithelial Cells. Biomedicines 2024; 12:412. [PMID: 38398015 PMCID: PMC10887121 DOI: 10.3390/biomedicines12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Areca nut is a major contributor to the high prevalence of oral cancer in Asia. The precise mechanisms by which areca nut stimulates mucosal cells and contributes to the progression of oral cancer urgently require clarification. The current study aimed to assess the effects of arecoline on the normal human gingival epithelium cell line S-G. Cell viability, levels of reactive oxygen species (ROS), protein expression, cellular morphology, and gene expression were evaluated using the MTT test, flow cytometry, Western blot analysis, optical or confocal microscopy, and RT-qPCR. Keratin (KRT6) analysis involved matched normal and cancer tissues from clinical head and neck specimens. The results demonstrated that 12.5 µg/mL of arecoline induced ROS production, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNA expression in S-G cells. This activation of the MAPK/ERK pathway increased KRT6 expression while limiting cell migration. In head and neck cancer tissues, KRT6B gene expression exceeded that of normal tissues. This study confirms that arecoline induces ROS accumulation in normal cells, leading to the secretion of proinflammatory factors and KRT6 expression. This impedes oral mucosal healing, thereby promoting the progression of oral cancer.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Hsin-Ying Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung 404328, Taiwan
| | - Nan-Chin Lin
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 505029, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500011, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung 411228, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Hung CC, Ko YC, Chung CM. Association between Single Nucleotide Polymorphisms in Monoamine Oxidase and the Severity of Addiction to Betel Quid. Curr Issues Mol Biol 2024; 46:1010-1019. [PMID: 38392182 PMCID: PMC10887354 DOI: 10.3390/cimb46020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Betel quid (BQ) is the fourth most popular psychoactive substance in the world, and BQ use disorder (BUD) is prevalent in Asian countries. Although the mechanisms underlying BUD remain unclear, studies have reported influences from monoamine oxidase inhibitor. We enrolled 50 patients with BUD and assessed their BQ consumption habits, emotional conditions, and the clinical severity of addiction-assessed using the Diagnostic and Statistical Manual of Mental Disorders [Fifth Edition] (DSM-5) criteria, Substance Use Severity Rating Scale, and Yale-Brown Obsessive Compulsive Disorder Rating Scale for BQ. Patients were categorized into the severe group when showing six or more symptoms defined by DSM-5. A genome-wide association study was conducted for single nucleotide polymorphisms in BRCA1, COL9A1, NOTCH1, HSPA13, FAT1, and MAOA by using patients' blood samples. More severe BUD symptoms were associated with younger age of using BQ and poor oral hygiene and with severe craving for and more anxiety toward BQ use. The MAOA rs5953210 polymorphism was significantly associated with severe BUD (odds ratio, 6.43; 95% confidence interval, 5.12-7.74; p < 0.01) and might contribute to BQ-associated cancer risk. Further studies are required to investigate the addictive properties of BQ and the development of novel diagnostic tools and pharmacotherapeutic alternatives to BUD treatment.
Collapse
Affiliation(s)
- Chung-Chieh Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106216, Taiwan
| | - Chia-Min Chung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
3
|
Li W, Ling L, Xiang L, Ding P, Yue W. Identification and validation of a risk model and molecular subtypes based on tryptophan metabolism-related genes to predict the clinical prognosis and tumor immune microenvironment in lower-grade glioma. Front Cell Neurosci 2023; 17:1146686. [PMID: 36925967 PMCID: PMC10011102 DOI: 10.3389/fncel.2023.1146686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background Lower-grade glioma (LGG) is one of the most common malignant tumors in the central nervous system (CNS). Accumulating evidence have demonstrated that tryptophan metabolism is significant in tumor. Therefore, this study aims to comprehensively clarify the relationship between tryptophan metabolism-related genes (TRGs) and LGGs. Methods The expression level of TRGs in LGG and normal tissues was first analyzed. Next, the key TRGs with prognostic value and differential expression in LGGs were identified using the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a risk model was constructed and Consensus clustering analysis was conducted based on the expression level of key TRGs. Then, the prognostic value, clinicopathological factors, and tumor immune microenvironment (TIME) characteristics between different risk groups and molecular subtypes were analyzed. Finally, the expression, prognosis, and TIME of each key TRGs were analyzed separately in LGG patients. Results A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA) dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx) dataset were included to evaluate the expression level of TRGs. After LASSO regression analysis, we identified six key TRGs and constructed a TRGs risk model. The survival analysis revealed that the risk model was the independent predictor in LGG patients. And the nomogram containing risk scores and independent clinicopathological factors could accurately predict the prognosis of LGG patients. In addition, the results of the Consensus cluster analysis based on the expression of the six TRGs showed that it could classify the LGG patients into two distinct clusters, with significant differences in prognosis, clinicopathological factors and TIME between these two clusters. Finally, we validated the expression, prognosis and immune infiltration of six key TRGs in patients with LGG. Conclusion This study demonstrated that tryptophan metabolism plays an important role in the progression of LGG. In addition, the risk model and the molecular subtypes we constructed not only could be used as an indicator to predict the prognosis of LGG patients but also were closely related to the clinicopathological factors and TIME of LGG patients. Overall, our study provides theoretical support for the ultimate realization of precision treatment for patients with LGG.
Collapse
Affiliation(s)
- Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peng Ding
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
4
|
Ragab AE, Badawy ET, Aboukhatwa SM, Kabbash A, Abo El-Seoud KA. In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction. Pharmaceuticals (Basel) 2022; 15:1171. [PMID: 36297282 PMCID: PMC9609924 DOI: 10.3390/ph15101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 09/28/2024] Open
Abstract
The search for anticancer drugs is of continuous interest. Arecoline is an alkaloid with anticancer activity. Herein, the metabolism of arecoline through fungal transformation was investigated for the discovery of potential anticancer drugs with higher activity and selectivity. Compounds 1-5 were isolated, and their structures were fully elucidated using various spectroscopic analyses, including 1D and 2D NMR, ESIMS, and HRESIMS. This is the first report for the isolation of compounds 1 and 2. An MTT assay was performed to determine the cytotoxic activity of arecoline and its metabolites in vitro using non-small-cell lung cancer A549 and leukemia K562 cell lines compared to staurosporine and doxorubicin as positive controls. For the non-small-cell lung A549 cell line, arecoline hydrobromide, staurosporine, and doxorubicin resulted in IC50 values of 11.73 ± 0.71 µM, 10.47 ± 0.64 µM, and 5.05 ± 0.13 µM, respectively, while compounds 1, 3, and 5 exhibited IC50 values of 3.08 ± 0.19 µM, 7.33 ± 0.45 µM, and 3.29 ± 0.20 µM, respectively. For the leukemia K562 cell line, the IC50 values of arecoline hydrobromide, staurosporine, and doxorubicin were 15.3 ± 1.08 µM, 5.07 ± 0.36 µM, and 6.94 ± 0.21 µM, respectively, while the IC50 values of compounds 1, 3 and 5 were 1.56 ± 0.11 µM, 3.33 ± 0.24 µM, and 2.15 ± 0.15 µM, respectively. The selectivity index value of these compounds was higher than 3. These results indicated that compounds 1, 3, and 5 are very strong cytotoxic agents with higher activity than the positive controls and good selectivity toward the tested cancer cell lines. Cell cycle arrest was then studied by flow cytometry to investigate the apoptotic mechanism. Docking simulation revealed that most compounds possessed good binding poses and favorable protein-ligand interactions with muscarinic acetylcholine receptor M3-mAChR protein. In silico study of pharmacokinetics using SwissADME predicted compounds 1-5 to be drug-like with a high probability of good oral bioavailability.
Collapse
Affiliation(s)
- Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ebtisam T. Badawy
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M. Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | | |
Collapse
|
5
|
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021; 26:molecules26196019. [PMID: 34641563 PMCID: PMC8513016 DOI: 10.3390/molecules26196019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.
Collapse
Affiliation(s)
- Reem Aljanabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Yakutiye 25030, Turkey;
| | - Mustafa Gul
- Department of Physiology, School of Medicine, Ataturk University, Yakutiye 25030, Turkey;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
- Correspondence: ; Tel.: +962-6535-5000 (ext. 23318)
| |
Collapse
|
6
|
Zhang Y, Zhao X, Li Y, Wang Y, Chen M. Association between the omentin-1 gene rs2274907 A>T polymorphism and colorectal cancer in the Chinese Han population: a case-control study. J Int Med Res 2021; 49:3000605211006522. [PMID: 33823642 PMCID: PMC8033482 DOI: 10.1177/03000605211006522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To explore the relationship between the omentin-1 gene rs2274907 A>T polymorphism and colorectal cancer (CRC) in the Chinese Han population. METHODS rs2274907 A>T was assessed by PCR-restriction fragment length polymorphism analysis. Plasma omentin-1 expression from 358 patients with CRC and 286 healthy controls was analyzed by enzyme-linked immunosorbent assay. CRC and control groups were divided into subgroups according to the body mass index (BMI) threshold of 25 kg/m2. RESULTS No significant differences were observed between CRC and control groups in terms of genotype or allele frequencies of rs2274907 A>T. Compared with individuals with BMI <25 kg/m2 and the rs2274907 TT genotype, those with AA+AT genotypes and BMI ≥25 kg/m2 had a 3.027-fold increased risk of CRC. A significant tendency toward a higher stage of colorectal adenocarcinomas and depth of invasion was observed in individuals with the rs2274907 AA genotype compared with other genotypes. CONCLUSIONS The omentin-1 gene rs2274907 A>T polymorphism does not seem to play a critical role in the development of CRC in the Chinese Han population, but an interaction between the rs2274907 A allele and BMI may increase the CRC risk. The rs2274907 AA genotype is a potential biomarker for CRC stage progression.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Peoples Republic of China
| | - Yongxiang Li
- Division of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Youmin Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Peoples Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Peoples Republic of China.,Institute of Traditional Chinese Medicine Diabetes Prevention, Anhui Academy of Traditional Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
7
|
Huang Y, Zhao W, Ouyang X, Wu F, Tao Y, Shi M. Monoamine Oxidase A Inhibits Lung Adenocarcinoma Cell Proliferation by Abrogating Aerobic Glycolysis. Front Oncol 2021; 11:645821. [PMID: 33763378 PMCID: PMC7982599 DOI: 10.3389/fonc.2021.645821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) accounts for ~30% of all lung cancers and is one of the causes of cancer-related death worldwide. As the role of monoamine oxidase A (MAOA) in LUAD remains unclear, in this study, we examine how MAOA affects LUAD cell proliferation. Analyses of both public data and our data reveal that the expression of MAOA is downregulated in LUAD compared with non-tumor tissue. In addition, the expression of MAOA in tumors correlates with clinicopathologic features, and the expression of MAOA serves as an independent biomarker in LUAD. In addition, the overexpression of MAOA inhibits LUAD cell proliferation by inducing G1 arrest in vitro. Further mechanistic studies show that MAOA abrogates aerobic glycolysis in LUAD cells by decreasing hexokinase 2 (HK2). Finally, the expression of HK2 shows a negative correlation with MAOA in LUAD, and high HK2 predicts poor clinical outcome. In conclusion, our findings indicate that MAOA functions as a tumor suppressor in LUAD. Our results indicate that the MAOA/HK2 axis could be potential targets in LUAD therapy.
Collapse
Affiliation(s)
- Yumin Huang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Xiaoping Ouyang
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yujian Tao
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Minhua Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Yang YC, Chien MH, Lai TC, Su CY, Jan YH, Hsiao M, Chen CL. Monoamine Oxidase B Expression Correlates with a Poor Prognosis in Colorectal Cancer Patients and Is Significantly Associated with Epithelial-to-Mesenchymal Transition-Related Gene Signatures. Int J Mol Sci 2020; 21:ijms21082813. [PMID: 32316576 PMCID: PMC7215409 DOI: 10.3390/ijms21082813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Monoamine oxidases (MAOs) including MAOA and MAOB are enzymes located on the outer membranes of mitochondria, which are responsible for catalyzing monoamine oxidation. Recently, increased level of MAOs were shown in several cancer types. However, possible roles of MAOs have not yet been elucidated in the progression and prognosis of colorectal carcinoma (CRC). We therefore analyzed the importance of MAOs in CRC by an in silico analysis and tissue microarrays. Several independent cohorts indicated that high expression of MAOB, but not MAOA, was correlated with a worse disease stage and poorer survival. In total, 203 colorectal adenocarcinoma cases underwent immunohistochemical staining of MAOs, and associations with clinicopathological parameters and patient outcomes were evaluated. We found that MAOB is highly expressed in CRC tissues compared to normal colorectal tissues, and its expression was significantly correlated with a higher recurrence rate and a poor prognosis. Moreover, according to the univariate and multivariate analyses, we found that MAOB could be an independent prognostic factor for overall survival and disease-free survival, and its prognostic value was better than T and N stage. Furthermore, significant positive and negative correlations of MAOB with mesenchymal-type and epithelial-type gene expressions were observed in CRC tissues. According to the highlighted characteristics of MAOB in CRC, MAOB can be used as a novel indicator to predict the progression and prognosis of CRC patients.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Department of Medical Research, Tungs’ Taichung Metro Harbor Hospital, Taichung 433, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2738-2126 (C.-L.C.); Fax: +886-2-2789-9931 (M.H.); +886-2-2377-0054 (C.-L.C.)
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Department of Pathology, Taipei Medical University Hospital and College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2738-2126 (C.-L.C.); Fax: +886-2-2789-9931 (M.H.); +886-2-2377-0054 (C.-L.C.)
| |
Collapse
|
9
|
Potential Salivary mRNA Biomarkers for Early Detection of Oral Cancer. J Clin Med 2020; 9:jcm9010243. [PMID: 31963366 PMCID: PMC7019677 DOI: 10.3390/jcm9010243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
We evaluated potential biomarkers in human whole saliva for the early diagnosis of oral squamous cell carcinoma (OSCC). We selected 30 candidate genes with relevance to cancer from recent reports in PubMed. Saliva samples were obtained from 34 non-tumor control and 33 OSCC patients. Real-time PCR was performed, and mRNA levels were compared. Normalized mRNA levels of six genes (NGFI-A binding protein 2 (NAB2), cytochrome P450, family 27, subfamily A, polypeptide 1 (CYP27A1), nuclear pore complex interacting protein family, member B4 (NPIPB4), monoamine oxidase B (MAOB), sialic acid acetyltransferase (SIAE), and collagen, type III, alpha 1 (COL3A1)) were significantly lower in saliva of OSCC patients. Receiver operating characteristics (ROC) analysis was used to individually evaluate the predictive power of the potential biomarkers for OSCC diagnosis. The area under the curve (AUC) values were evaluated for the OSCC vs. non-tumor groups via univariate ROC analyses, as well as multivariate ROC analyses of combinations of multiple potential biomarkers. The combination of CYP27A1 + SIAE showed a favorable AUC value of 0.84. When we divided saliva samples into two groups according to age using a 60-year cut-off, with OSCC patients and controls evaluated together, the AUC of MAOB-NAB2 was more predictive of OSCC in the under-60 group (AUC, 0.91; sensitivity, 0.92; and specificity, 0.86) than any other gene combination. These results are expected to aid the early diagnosis of OSCC, especially in patients under 60 years of age. While more studies with larger numbers of patients are necessary, our result suggest that salivary mRNA would be a potent biomarker for early OSCC diagnosis.
Collapse
|
10
|
Zhang X, Zhang Y, He Z, Yin K, Li B, Zhang L, Xu Z. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis 2019; 10:788. [PMID: 31624248 PMCID: PMC6797812 DOI: 10.1038/s41419-019-2030-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
An increasing number of studies indicate that adrenergic signalling plays a fundamental role in chronic stress-induced tumour progression and metastasis. However, its function in gastric cancer (GC) and its potential mechanisms remain unknown. The expression levels of β-adrenergic receptor (ADRB) in GC cell lines were examined by using real-time polymerase chain reaction (RT-PCR) and western blotting. The effects of β2 adrenergic receptor (ADRB2) activation and blockade were investigated in vitro in GC cells by using proliferation, migration, invasion, cell cycle and apoptosis assays. Chronic restraint stress (CRS) increased the plasma levels of catecholamines and cortisol and also induced progression and metastasis of GC in vivo. Furthermore, immunohistochemical staining and a TUNEL assay were employed to observe the regulation of cell viability in vivo. The expression levels of ADRB2 in 100 human GC samples were measured by RT-PCR and immunohistochemistry. The stress hormones epinephrine and norepinephrine significantly accelerated GC cell proliferation, invasion and viability in culture, as well as tumour growth in vivo. These effects were reversed by the ADRB antagonists propranolol and ICI118,551 (an ADRB2-specific antagonist). Moreover, the selective ADRB1 antagonist atenolol had almost no effect on tumour cell proliferation and invasion in vitro and in vivo. ADRB2 antagonists suppressed proliferation, invasion and metastasis by inhibiting the ERK1/2-JNK-MAPK pathway and transcription factors, such as NF-κB, AP-1, CREB and STAT3. Analysis of xenograft models using GC cells revealed that ADRB2 antagonists significantly inhibited tumour growth and metastasis, and chronic stress antagonized these inhibitory effects. In addition, chronic stress increased the expression of VEGF, MMP-2, MMP-7 and MMP-9 in transplanted tumour tissue, and catecholamine hormones enhanced the expression of metastasis-related proteins. The expression of ADRB2 was upregulated in tumour tissues and positively correlated with tumour size, histological grade, lymph node metastasis and clinical stage in human GC samples. Stress hormone-induced activation of the ADRB2 signalling pathway plays a crucial role in GC progression and metastasis. These findings indicate that ADRB2 signalling regulates GC progression and suggest β2 blockade as a novel strategy to complement existing therapies for GC.
Collapse
MESH Headings
- Animals
- Cell Movement/physiology
- Cell Proliferation/physiology
- Disease Progression
- Female
- Heterografts
- Humans
- MAP Kinase Signaling System
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/metabolism
- Neoplasm Metastasis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Xuan Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, Jiangsu Province, 221002, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
11
|
Differential Expression of Prostaglandin I2 Synthase Associated with Arachidonic Acid Pathway in the Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2018; 2018:6301980. [PMID: 30532780 PMCID: PMC6250001 DOI: 10.1155/2018/6301980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Introduction Differential expression of genes encoding cytochrome P450 (CYP) and other oxygenases enzymes involved in biotransformation mechanisms of endogenous and exogenous compounds can lead to oral tumor development. Objective We aimed to identify the expression profile of these genes, searching for susceptibility biomarkers in oral squamous cell carcinoma. Patients and Methods Sixteen oral squamous cell carcinoma samples were included in this study (eight tumor and eight adjacent non-tumor tissues). Gene expression quantification was performed using TaqMan Array Human CYP450 and other Oxygenases 96-well plate (Applied Biosystems) by real time qPCR. Protein quantification was performed by ELISA and IHC methods. Bioinformatics tools were used to find metabolic pathways related to the enzymes encoded by differentially expressed genes. Results. CYP27B1, CYP27A1, CYP2E1, CYP2R1, CYP2J2, CYP2U1, CYP4F12, CYP4X1, CYP4B1, PTGIS, ALOX12, and MAOB genes presented differential expression in the oral tumors. After correction by multiple tests, only the PTGIS (Prostaglandin I2 Synthase) gene presented significant differential expression (P < 0.05). The PTGIS gene and protein were reduced in oral tumors. Conclusion PTGIS presents downexpression in oral tumors. PTGIS play an important role in the arachidonic acid metabolism. Arachidonic acid and/or metabolites are derived from this pathway, which can influence the regulation of important physiological mechanisms in tumorigenesis process.
Collapse
|
12
|
Hodorová I, Rybárová S, Solár P, Benický M, Rybár D, Kováčová Z, Mihalik J. Monoamine Oxidase B in Renal Cell Carcinoma. Med Sci Monit 2018; 24:5422-5426. [PMID: 30076780 PMCID: PMC6088511 DOI: 10.12659/msm.909507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Studies on monoamine oxidase B (MAO-B) expression in renal cell carcinoma (RCC) are lacking. This study focused on the immunohistochemical evaluation of MAO-B in RCC. MATERIAL AND METHODS Sixty-three RCC samples were compared on basic clinical and histopathological parameters, including histopathological type and tumor grade. RCC samples were divided according to the histopathological type into 2 groups: conventional type (51 samples) and other types (12 samples). For MAO-B detection, a standard immunohistochemical procedure was employed. RESULTS In healthy kidney samples, MAO-B was detected predominantly in tubules. Fifty-two cancer tissue samples were MAO-B negative and 11 tissue samples were MAO-B low positive. Enzymes were detected only in the cytoplasm. We did not find any significant correlation between the percentage of positive MAO-B specimens and nuclear grade. Additionally, Fisher's test did not reveal any difference in numbers of positive and negative MAO-B samples between the 2 RCC types (P>0.05). CONCLUSIONS From our results, it was clear that MAO-B expression played no significant role in stimulation of renal cancer development. We found that MAO-B occurred only in 19% of kidney tumors and that the positivity of protein expression was low. Moreover, it seems that the disappearance of this enzyme in RCC is a consequence of replacement of healthy tissue by cancer cells. On the other hand, one can assume that the loss of MAO-B expression could be associated with severe pathological processes in the kidney.
Collapse
Affiliation(s)
- Ingrid Hodorová
- Department of Anatomy, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Silvia Rybárová
- Department of Anatomy, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Marián Benický
- Department of Pathology, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Dušan Rybár
- Department of Anesthesiology and Intensive Medicine, P.J. Šafárik University, Faculty of Medicine and VUSCH a.s., Košice, Slovakia
| | - Zuzana Kováčová
- Department of Anatomy, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Jozef Mihalik
- Department of Anatomy, P.J. Šafárik University, Faculty of Medicine, Košice, Slovakia
| |
Collapse
|
13
|
Chen PH, Mahmood Q, Mariottini GL, Chiang TA, Lee KW. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3904098. [PMID: 29376073 PMCID: PMC5742426 DOI: 10.1155/2017/3904098] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Global reports estimate 600 million betel quid (BQ) chewers. BQ chewing has been demonstrated not only to be a risk factor for cancers of the oral cavity and pharynx and oral potentially malignant disorders (OPMD) but also to cause other cancers and adverse health effects. Herein, we summarized the international comparison data to aid in the understanding of the close relationship between the prevalence of BQ chewing, the occurrence of oral and pharyngeal cancers, and adverse health effects. Potential biomarkers of BQ carcinogens, such as areca nut, alkaloids, and 3-methylnitrosaminopropionitrile (MNPN), are closely associated with human health toxicology. Molecular mechanisms or pathways involving autophagy, hypoxia, COX-2, NF-κB activity, and stemness are known to be induced by BQ ingredients and are very closely related to the carcinogenesis of cancers of oral and pharynx. BQ abuse-related monoamine oxidase (MAO) gene was associated with the occurrence and progress of oral and pharyngeal cancers. In summary, our review article provides important insights into the potential roles of environmental BQ (specific alkaloid biomarkers and nitrosamine products MNPN) and genetic factors (MAO) and offers a basis for studies aiming to reduce or eliminate BQ-related OPMD and oral/pharyngeal cancer incidences in the future.
Collapse
Affiliation(s)
- Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Tai-An Chiang
- College of Human Science and Technology, Chung Hwa University of Medical Technology, No. 89, Wenhwa 1st St., Rende Shiang, Tainan 71703, Taiwan
| | - Ka-Wo Lee
- Department of Otolaryngology, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- Department of Otolaryngology, College of Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Uehara O, Takimoto K, Morikawa T, Harada F, Takai R, Adhikari BR, Itatsu R, Nakamura T, Yoshida K, Matsuoka H, Nagayasu H, Saito I, Muthumala M, Chiba I, Abiko Y. Upregulated expression of MMP-9 in gingival epithelial cells induced by prolonged stimulation with arecoline. Oncol Lett 2017; 14:1186-1192. [PMID: 28693294 DOI: 10.3892/ol.2017.6194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 01/03/2023] Open
Abstract
Betel quid chewing is implicated in the high prevalence of oral cancer in Southeast Asian countries. One of the major components of betel quid is arecoline. In the present study, in order to characterize the association between chronic arecoline stimulation and carcinogenesis the expression level of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in human gingival epithelial progenitor cells (HGEPs) stimulated with arecoline was assessed. The HGEPs were alternated between 3 days of incubation with arecoline (50 µg/ml), and 3 days without arecoline, for up to 30 days. The expression levels of the MMPs and TIMPs in the cells stimulated with arecoline were evaluated by reverse transcription-quantitative polymerase chain reaction at 18 and 30 days. The expression of MMP-9 mRNA in the experimental group was significantly increased compared with in the control group (P<0.01). No significant differences in the expression of MMP-2, TIMP-1 or TIMP-2 mRNA were observed between the experimental and control groups. Using an MMP-9 activity assay, the levels of MMP-9 activity in the experimental group were demonstrated to be significantly higher than in the control group (P<0.05). To investigate associated cellular signaling pathways, PDTC [a nuclear factor (NF)-κB/inhibitor of NF-κB (IκB) inhibitor], PD98059 [a mitogen-activated protein kinase kinase (MAPKK)1 and MAPKK2 inhibitor], SB203580 (a p38 MAPK inhibitor) and 5,15-DPP [a signal transduction and activator of transcription (STAT) 3 inhibitor] were used. All inhibitors decreased the extent of MMP-9 upregulation induced by stimulation with arecoline. Based on the data, it is hypothesized that MMP-9 activity may be involved in the pathological alterations of oral epithelium induced by betel quid chewing, and that the NF-κB/IκB, MAPK, p38 MAPK and STAT3 signaling pathways may be involved in the production of MMP-9 induced by betel quid chewing.
Collapse
Affiliation(s)
- Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Kousuke Takimoto
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Fumiya Harada
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Rie Takai
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ryoko Itatsu
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tomohisa Nakamura
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa 230-8501, Japan
| | - Malsantha Muthumala
- Department of Oral and Maxillofacial Surgery, Army Hospital, Colombo, Sri Lanka
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
15
|
Wang JX, Yu HL, Bei SS, Cui ZH, Li ZW, Liu ZJ, Lv YF. Association of HMGB1 Gene Polymorphisms with Risk of Colorectal Cancer in a Chinese Population. Med Sci Monit 2016; 22:3419-3425. [PMID: 27665685 PMCID: PMC5040220 DOI: 10.12659/msm.896693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. More advanced work is required in the detection of biomarkers for CRC susceptibility and prognosis. High-mobility group box-1 (HMGB1) is an angiogenesis-related gene reported to be associated with the development of CRC. The direct evidence of HMGB1 gene polymorphisms as biomarkers for CRC has not been reported previously. Material/Methods A total of 240 CRC patients and 480 healthy controls were periodically enrolled. DNA was extracted from blood specimens. The distributions of SNPs of HMGB1 were determined by using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay. Results In this case-control study, we observed a significant association between overall CRC risk and SNP rs2249825 (CG vs. CC and GG vs. CC). Participants carrying both rs2249825 CG (OR, 2.67; 95% CI, 1.89 to 3.78) and rs2249825 GG genotypes (OR, 2.32; 95% CI, 1.13 to 4.73) had a significantly increased risk of developing CRC compared to those carrying GG genotype. rs2249825 was associated with the risk of CRC in the dominant model but not in the recessive model. However, we found no significant differences in the rs1412125 or rs1045411 polymorphisms in the HMGB1. Advanced analyses showed that the number of rs2249825 G alleles showed a significant relationship with risk of CRC. Conclusions Our results show an association between HMGB1 rs2249825 SNP and CRC incidence in the Chinese Han population. However, population-based studies with more subjects and prognostic effects are needed to verify the association of HMGB1 SNPs with CRC susceptibility, severity, and long-term prognosis.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Hua-Long Yu
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shao-Sheng Bei
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen-Hua Cui
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhi-Wen Li
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen-Ji Liu
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yan-Feng Lv
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|