1
|
Song Y, Lee SY, Kim S, Choi I, Kim N, Park J, Seo HR. HO-1089 and HO-1197, Novel Herbal Formulas, Have Antitumor Effects via Suppression of PLK1 (Polo-like Kinase 1) Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15030851. [PMID: 36765811 PMCID: PMC9913440 DOI: 10.3390/cancers15030851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
The treatment for hepatocellular carcinoma (HCC), a severe cancer with a very high mortality rate, begins with the surgical resection of the primary tumor. For metastasis or for tumors that cannot be resected, sorafenib, a multi-tyrosine protein kinase inhibitor, is usually the drug of choice. However, typically, neither resection nor sorafenib provides a cure. The drug discovery strategy for HCC therapy is shifting from monotherapies to combination regimens that combine an immuno-oncology agent with an angiogenesis inhibitor. Herbal formulas can be included in the combinations used for this personalized medicine approach. In this study, we evaluated the HCC anticancer efficacy of the new herbal formula, HO-1089. Treatment with HO-1089 inhibited HCC tumor growth by inducing DNA damage-mediated apoptosis and by arresting HCC cell replication during the G2/M phase. HO-1089 also attenuated the migratory capacity of HCC cells via the inhibition of the expression of EMT-related proteins. Biological pathways involved in metabolism and the mitotic cell cycle were suppressed in HO-1089-treated HCC cells. HO-1089 attenuated expression of the G2/M phase regulatory protein, PLK1 (polo-like kinase 1), in HCC cells. HCC xenograft mouse models revealed that the daily oral administration of HO-1089 retarded tumor growth without systemic toxicity in vivo. The use of HO-1197, a novel herbal formula derived from HO-1089, resulted in statistically significant improved anticancer efficacy relative to HO-1089 in HCC. These results suggest that HO-1089 is a safe and potent integrated natural medicine for HCC therapy.
Collapse
Affiliation(s)
- Yeonhwa Song
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Su-Yeon Lee
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Sanghwa Kim
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Namjeong Kim
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jongmin Park
- H&O Biosis Co., Ltd., 19-10, Jeongnamsandan-ro, Jeongnam-myeon, Hwaseong-si 18514, Gyeonggi-do, Republic of Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Lab, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Correspondence:
| |
Collapse
|
2
|
Liu X, Wang K, Cai G, Li H, Guo Y, Gong J. Comparative chemical diversity and antioxidant activities of three species of Akebia herbal medicines. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
3
|
Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebiatrifoliata: A Bioinformatics Study. Genes (Basel) 2022; 13:genes13091540. [PMID: 36140708 PMCID: PMC9498614 DOI: 10.3390/genes13091540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors have been found in most plants and play an important role in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very useful project for studying morphogenesis and resistance formation. In the present study, a total of 63 WRKY genes consisting of 13 class I, 41 class II, and 9 class III genes were identified from the newly published A. trifoliata genome, of which 62 were physically distributed on all 16 chromosomes. Structurally, two AkWRKY genes (AkWRKY6 and AkWRKY52) contained four domains, and AkWRKY17 lacked the typical heptapeptide structure. Evolutionarily, 42, 16, and 5 AkWRKY genes experienced whole genome duplication (WGD) or fragmentation, dispersed duplication, and tandem duplication, respectively; 28 Ka/Ks values of 30 pairs of homologous genes were far lower than 1, while those of orthologous gene pairs between AkWRKY41 and AkWRKY52 reached up to 2.07. Transcriptome analysis showed that many of the genes were generally expressed at a low level in 12 fruit samples consisting of three tissues, including rind, flesh, and seeds, at four developmental stages, and interaction analysis between AkWRKY and AkNBS genes containing W-boxes suggested that AkWRKY24 could play a role in plant disease resistance by positively regulating AkNBS18. In summary, the WRKY gene family of A. trifoliata was systemically characterized for the first time, and the data and information obtained regarding AkWRKY could be very useful in further theoretically elucidating the molecular mechanisms of plant development and response to pathogens and practically improving favorable traits such as disease resistance.
Collapse
|
4
|
Optimization of Flash Extraction of Akebia trifoliata Seed Oil by the Box-Behnken Response Surface Methodology and Comparison of Oil Yields from Different Origins. J CHEM-NY 2022. [DOI: 10.1155/2022/1790826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim was to optimize the extraction process of Akebia trifoliata seed oil. Using Akebia trifoliata seed as raw material, the oil extraction rate was used as index. The effect of flash extraction on the yield of Akebia trifoliata seed oil was investigated. Taking the liquid-material ratio, extraction voltage, and extraction time as the investigation factors and the oil extraction rate of Akebia trifoliata seed as the response value and on the basis of the single-factor test, the extraction process of Akebia trifoliata seed oil was optimized by the Box-Behnken response surface method. The oil yields of Akebia trifoliata seeds from different origins in China were compared. The experimental results showed that the optimum technological conditions for flash extraction of Akebia trifoliata seed oil were as follows: liquid-material ratio, 12 : 1; extraction voltage, 150 V; extraction time, 90 s; and oil yield of Akebia trifoliata seed, 19.83%. For comparison, it is found that the oil yield of Akebia trifoliata seed produced in Qujing of Yunnan is relatively the highest, followed by Tongren of Guizhou and Zhangjiajie of Hunan; the oil yield of Akebia trifoliata seed produced in Shimian of Sichuan is the lowest. The flash extraction process of Akebia trifoliata seed oil is reasonable, and the oil yield of Akebia trifoliata seed produced in Qujing of Yunnan, China, is relatively the highest. It provides a theoretical and experimental reference for the research and development of Akebia trifoliata seed oil.
Collapse
|
5
|
Niu J, Sun Z, Shi Y, Huang K, Zhong Y, Chen J, Chen J, Luan M. Comparative Analysis of Akebia trifoliata Fruit Softening at Different Flesh Ripening Stages Using Tandem Mass Tag Technology. Front Nutr 2021; 8:684271. [PMID: 34291071 PMCID: PMC8287030 DOI: 10.3389/fnut.2021.684271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to its medicinal and high nutritional values, Akebia trifoliata can be considered as a new type of medicinal and edible homologous resources, and it has begun to be widely cultivated in many areas of China. Over-softening of fruit would affect the sensorial quality, utilization rate, and consumer acceptance of the fruit postharvest. However, fruit softening has not been characterized and the molecular mechanism underlying A. trifoliata fruit softening during ripening remains unclear. A comparative proteomic analysis was performed on the fruit at three developmental stages using tandem mass tag technology. In total, 2,839 proteins and 302 differentially abundant proteins (DAPs) were identified. Bioinformatics analysis indicated that most DAPs were implicated in oxidoreductase activity, protein domain-specific binding and pyruvate metabolism. Moreover, 29 DAPs associated with cell wall metabolism, plant hormone, and stress and defense response pathways were validated using quantitative PCR. Notably, pectinesterase, pectate lyase, and β-galactosidase, which are involved in cell wall degradation, as well as gibberellin regulated protein, cysteine protease, thaumatin-like protein and heat shock proteins which is involved in plant hormone, and stress and defense response, were significantly up-regulated in softening fruit compared with the levels in non-softening fruit. This indicated that they might play key roles in A. trifoliata fruit softening. Our findings will provide new insights into potential genes influencing fruit softening traits of A. trifoliata, which will help to develop strategies to improve fruit quality and reduce softening-related losses.
Collapse
Affiliation(s)
- Juan Niu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Yaliang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Kunyong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Yicheng Zhong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Jing Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Jianhua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha, China
| |
Collapse
|
6
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods 2021; 10:foods10061432. [PMID: 34205582 PMCID: PMC8234544 DOI: 10.3390/foods10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Akebia trifoliata is a fruit with rich nutritional properties, and its peel is produced as a by-product. In this research, we investigated the influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels, and the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) as well as total phenolic contents (TPC) were used to optimize extraction parameters. The influences of ethanol concentration, microwave power and solvent-to-material ratio, as well as extraction temperature and time on TPC, FRAP and TEAC values, were assessed using single-factor tests. Three parameters with obvious effects on antioxidant capacity were selected to further investigate their interactions by response surface methodology. The optimal extraction parameters of natural antioxidants from Akebia trifoliata peels were ethanol concentration, 49.61% (v/v); solvent-to-material ratio, 32.59:1 mL/g; extraction time, 39.31 min; microwave power, 500 W; and extraction temperature, 50 °C. Under optimal conditions, the FRAP, TEAC and TPC values of Akebia trifoliata peel extracts were 351.86 ± 9.47 µM Fe(II)/g dry weight (DW), 191.12 ± 3.53 µM Trolox/g DW and 32.67 ± 0.90 mg gallic acid equivalent (GAE)/g DW, respectively. Furthermore, the main bioactive compounds (chlorogenic acid, rutin and ellagic acid) in the extract were determined by high-performance liquid chromatography. The results are useful for the full utilization of the by-product from Akebia trifoliate fruit.
Collapse
Affiliation(s)
- Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
7
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
8
|
Lu WL, Yang T, Song QJ, Fang ZQ, Pan ZQ, Liang C, Jia DW, Peng PK. Akebia trifoliata (Thunb.) Koidz Seed Extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:204-215. [PMID: 30528882 DOI: 10.1016/j.jep.2018.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high recurrence rate postoperative and extensive metastases have become the obstacle of Hepatocellular Carcinoma (HCC) efficacy improvements, which contribute to most of the patient mortality. Akebia trifoliata (Thunb.) Koidz has been shown pharmacological activities in clinical and anti-HCC biological activity in previous research, but its potential function of anti-metastasis remains unknown. AIM OF THIS STUDY To make sure whether ATKSE inhibits migration and invasion in HCC cell lines in vitro and the potential mechanism. MATERIALS AND METHODS A UHPLC-HRMS analysis was adopted to identify and control the quality of the ethanol extract of Akebia trifoliata (Thunb.) Koidz Seed (abbreviated ATKSE). Cell viability of three kinds of HCC cell lines (HEPG2, HUH7, and SMMC7721) was detected using MTT assay and Flow cytometry. Adhesion capacity was measured by cell-matrigel adhesion assay. Wounded healing and Matrigel-transwell invasion assays were performed to assess cell migration and invasion, respectively. Western blot assay was used to detect several metastasis-related protein molecules, including FAK adhesion signaling, cadherin molecules, and MMPs. ELISA assay was used to evaluate the secreted MMP9 level. RESULTS ATKSE significantly suppressed HCC cells viability and proliferation (from 0.9 up to 3.0 mg/ml); then under sub-lethal concentration (from 0.25 up to 1.0 mg/ml), ATKSE inhibited cell adhesion, migration, and invasion in a way of dose-dependent. Several metastatic-related molecules or pathway, including FAK adhesion signaling, cadherin molecules, and MMPs, took part in this process. There are both differences and commonalities in various cell lines: typically such as p-FAK was down-regulated by ATKSE in both HEPG2 and SMMC7721, while was raised in HUH7; Further attempts on the combination of ATKSE and FAK inhibitors, provide us with the enhanced inhibitory effects of invasion and migration in HEPG2 and HUH7 cells, as well as antagonistic effects in SMMC7721. As a target or potential mechanism, it may be more valuable to concern FAK inhibition by ATKSE in HEPG2 cells than in the other two cells. CONCLUSIONS These results suggest that ATKSE has anti-metastasis potency in HCC cells.
Collapse
Affiliation(s)
- Wen-Li Lu
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Tao Yang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qiu-Jia Song
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Zhao-Qin Fang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Zhi-Qiang Pan
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Cao Liang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Dong-Wei Jia
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Pei-Ke Peng
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Xi SY, Minuk GY. Role of traditional Chinese medicine in the management of patients with hepatocellular carcinoma. World J Hepatol 2018; 10:799-806. [PMID: 30533181 PMCID: PMC6280158 DOI: 10.4254/wjh.v10.i11.799] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been employed for centuries in the treatment of patients with hepatocellular carcinoma (HCC). Previous reviews of this topic have focused on certain aspects of TCM treatment rather than an overall assessment of their value and mechanisms of action. Both the Chinese and English medical literatures were reviewed to identify where TCM might be of value in the treatment of HCC and the justification for such treatment. TCM treatment corrects the "internal disequilibriums" thought to be responsible for the development, growth, and spread of the tumor. It has also been used to manage symptoms associated with HCC and the adverse effects of chemo- and radiation-therapies. Recent research has documented the precise effects of TCM on tumor biology. There are also increasing efforts to identify which of the many components of TCM herbal remedies are primarily responsible for these beneficial effects. This review outlines the benefits of TCM treatment of HCC and the laboratory data describing their anti-tumor properties.
Collapse
Affiliation(s)
- Sheng-Yan Xi
- Department of Traditional Chinese Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Gerald Yosel Minuk
- Section of Hepatology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
10
|
Moreira AJ, Ordoñez R, Cerski CT, Picada JN, García-Palomo A, Marroni NP, Mauriz JL, González-Gallego J. Melatonin Activates Endoplasmic Reticulum Stress and Apoptosis in Rats with Diethylnitrosamine-Induced Hepatocarcinogenesis. PLoS One 2015; 10:e0144517. [PMID: 26656265 PMCID: PMC4684373 DOI: 10.1371/journal.pone.0144517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence, its metastatic potential and the low efficacy of conventional treatment. Inactivation of apoptosis is implicated in tumour progression and chemotherapy resistance, and has been linked to the presence of endoplasmic reticulum stress. Melatonin, the main product of the pineal gland, exerts anti-proliferative, pro-apoptotic and anti-angiogenic effects in HCC cells, but these effects still need to be confirmed in animal models. Male Wistar rats in treatment groups received diethylnitrosamine (DEN) 50 mg/kg intraperitoneally twice/once a week for 18 weeks. Melatonin was given in drinking water at 1 mg/kg/d, beginning 5 or 12 weeks after the start of DEN administration. Melatonin improved survival rates and successfully attenuated liver injury, as shown by histopathology, decreased levels of serum transaminases and reduced expression of placental glutathione S-transferase. Furthermore, melatonin treatment resulted in a significant increase of caspase 3, 8 and 9 activities, polyadenosine diphosphate (ADP) ribose polymerase (PARP) cleavage, and Bcl-associated X protein (Bax)/Bcl-2 ratio. Cytochrome c, p53 and Fas-L protein concentration were also significantly enhanced by melatonin. Melatonin induced an increased expression of activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) and immunoglobulin heavy chain-binding protein (BiP), while cyclooxygenase (COX)-2 expression decreased. Data obtained suggest that induction of apoptosis and ER stress contribute to the beneficial effects of melatonin in rats with DEN-induced HCC.
Collapse
Affiliation(s)
- Andrea Janz Moreira
- Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Ordoñez
- Institute of Biomedicine (IBIOMED), University of León, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Carlos Thadeu Cerski
- Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline Nascimento Picada
- Graduate Program in Cell and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Brazil
| | | | - Norma Possa Marroni
- Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Cell and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, Brazil
| | - Jose L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- * E-mail:
| |
Collapse
|