1
|
Kapo N, Zuber Bogdanović I, Gagović E, Žekić M, Veinović G, Sukara R, Mihaljica D, Adžić B, Kadriaj P, Cvetkovikj A, Djadjovski I, Potkonjak A, Velo E, Savić S, Tomanović S, Omeragić J, Beck R, Hodžić A. Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasit Vectors 2024; 17:45. [PMID: 38297327 PMCID: PMC10832161 DOI: 10.1186/s13071-023-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Naida Kapo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Ema Gagović
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marina Žekić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Adžić
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| | - Përparim Kadriaj
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Aleksandar Cvetkovikj
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Igor Djadjovski
- Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Enkelejda Velo
- Vector Control Unit, Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmin Omeragić
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Laboratory for Parasitology, Croatian Veterinary Institute, Zagreb, Croatia.
| | - Adnan Hodžić
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Colella V, Huggins L, Hodžić A, Galon C, Traub R, Alić A, Iatta R, Halos L, Otranto D, Vayssier‐Taussat M, Moutailler S. High-throughput microfluidic real-time PCR for the simultaneous detection of selected vector-borne pathogens in dogs in Bosnia and Herzegovina. Transbound Emerg Dis 2022; 69:e2943-e2951. [PMID: 35766324 PMCID: PMC9796230 DOI: 10.1111/tbed.14645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/25/2022] [Indexed: 01/01/2023]
Abstract
A scarcity of information on the occurrence of zoonotic vector-borne pathogens (VBPs), alongside a lack of human and animal health authorities' awareness of pre-existing data, augment the risk of VBP infection for local people and limit our ability to establish control programs. This holds especially true in low-middle income countries such as Bosnia and Herzegovina (BiH). This dearth of information on zoonotic VBPs is bolstered by the inability of previously used diagnostic tests, including conventional molecular diagnostic methods, to detect the full spectrum of relevant pathogens. Considering this, we set out to apply a microfluidic qPCR assay capable of detecting 43 bacterial and protozoan pathogens from blood to accrue critical baseline data for VBPs occurrence in BiH. A total of 408 dogs were tested of which half were infected with at least one VBP of zoonotic or veterinary importance. Leishmania infantum was found in 18% of dogs, reaching a prevalence as high as 38% in urbanized areas of Sarajevo. These data highlight substantially higher levels of L. infantum prevalence when compared to that previously reported using conventional methods using the same samples. Additionally, this high-throughput microfluidic qPCR assay was able to detect pathogens rarely or never reported in canines in BiH, including Anaplasma phagocytophilum (3%), Anaplasma platys (0.2%), haemotropic Mycoplasma (1%) and Hepatozoon canis (26%). Our report of the endemicity of important zoonotic pathogens and those of clinical significance to dogs emphasizes the need for urgent implementation of surveillance and control for VBPs in BiH, targeting both animal and human infections within the country.
Collapse
Affiliation(s)
- Vito Colella
- Department of Veterinary MedicineUniversity of BariBariApuliaItaly,Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Lucas Huggins
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Adnan Hodžić
- University of Veterinary Medicine ViennaViennaAustria
| | - Clemence Galon
- Ecole Nationale Vétérinaire d'AlfortMaisons‐AlfortFrance
| | - Rebecca Traub
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Amer Alić
- University of SarajevoSarajevoBosnia and Herzegovina
| | - Roberta Iatta
- Department of Veterinary MedicineUniversity of BariBariApuliaItaly
| | - Lénaïg Halos
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Domenico Otranto
- Department of Veterinary MedicineUniversity of BariBariApuliaItaly,Bu‐Ali Sina UniversityHamedanIran
| | | | | |
Collapse
|