1
|
Tajabadi A, Abbasnejad M, Kooshki R, Esmaeili-Mahani S, Raoof M, Lobbezoo F. Repeated gentle handling or maternal deprivation during the neonatal stage increases adult male rats' baseline orofacial pain responsiveness. Arch Oral Biol 2023; 151:105699. [PMID: 37075692 DOI: 10.1016/j.archoralbio.2023.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/18/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Early life experiences have been found to have a long-lasting effect on brain development in adult life. The purpose of this study was to determine whether neonatal manipulation could alter orofacial pain responsiveness in adult rats METHODS: In the first 21 days of life, male rats were exposed to gentle handling or maternal deprivation (MD) procedures to establish models of handled and MD rats, respectively. The rats were assigned to three of the following experimental groups at the age of two months: intra-dental capsaicin (100 µg), intra-lip formalin (50 µL), and repeated nitroglycerin (NTG) (5 mg/rat/ip) infusion. In addition, there were three drug vehicle groups and three groups that received capsaicin, formalin, or NTG without prior handling or MD procedures. The behaviors were recorded following the pain induction. RESULTS Spontaneous pain behaviors in the first phase of formalin test was significantly increased in MD (p < 0.01) and handled rats in comparison with the vehicle group (p < 0.05). The second-phase data showed that formalin-induced spontaneous pain behaviors was increased in rats- treated with MD as compared to either vehicle or handled+formalin groups (p < 0.001). Capsaicin-induced dental pulp nociception was increased in the MD group in comparison with the capsaicin (p < 0.001) and capsaicin+handled (p < 0.001) groups. Moreover, NTG-induced migraine-like behaviors symptoms were increased in the MD group as compared to control and handled groups (p < 0.05). CONCLUSIONS In this study neonatal gentle handling or MD treatment increased orofacial pain in adulthood, showing early life experiences permanent effects on the development of trigeminal circuits in the brain.
Collapse
Affiliation(s)
- Abbas Tajabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Wang Y, Lu Y, Du M, Hussein NM, Li L, Wang Y, Mao C, Chen T, Chen F, Liu X, Yan Z, Fu Y. Altered Spontaneous Brain Activity in Left-Behind Children: A Resting-State Functional MRI Study. Front Neurol 2022; 13:834458. [PMID: 35422754 PMCID: PMC9002172 DOI: 10.3389/fneur.2022.834458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Parental migration has been associated with a higher risk of cognitive and behavioral abnormalities in left-behind children (LBC). This study aimed to explore the spontaneous brain activity in LBC and reveal the mechanisms underlying behavioral and cognitive abnormalities. Methods Involved LBC (n = 36) and non-LBC (n = 22) underwent resting-state functional MRI (fMRI) examination and cognitive and behavioral assessment. The fMRI-based amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were assessed to analyze the spontaneous brain activity pattern. The relationships among abnormal spontaneous brain activity, behavioral and cognitive deficits and altered family environment were assessed by partial correlation analysis. Results Compared with non-LBC, LBC exhibited increased amplitude of low-frequency fluctuations in the right lingual gyrus (LING), while a decreased ALFF was observed in the bilateral insula and right orbital part of the middle frontal gyrus (ORBmid) (two-tailed voxel-level p < 0.01 and cluster-level p <0.05, Gaussian Random Field (GRF) correction). The fALFF in LBC were significantly increased in the left cerebellum 9 (Cbe9) and right cerebellum Crus2 (CbeCru2), while it decreased in the right hippocampus and left superior temporal gyrus (STG) (two-tailed voxel-level p < 0.01 and cluster-level p < 0.05, GRF correction). The ALFF and fALFF values in abnormal brain regions were found to be correlated with the learning ability, except for the right insula, while the fALFF values of the left STG were positively correlated with the full-scale IQ scores (p < 0.05). Moreover, the ALFF and fALFF values in all abnormal brain regions correlated with the education level of caregivers (p < 0.05). Conclusions Our study provided empirical evidence that the lack of direct parental care during early childhood could affect brain function development involving cognition, behavior, and emotion. Our findings emphasized that intellectual and emotional cares are essential for LBC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meimei Du
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nimo Mohamed Hussein
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lan Li
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuanwan Mao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- China-USA Neuroimaging Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhihan Yan
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yuchuan Fu
| |
Collapse
|
3
|
Klimczak P, Rizzo A, Castillo-Gómez E, Perez-Rando M, Gramuntell Y, Beltran M, Nacher J. Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment. Front Synaptic Neurosci 2021; 13:733989. [PMID: 34630066 PMCID: PMC8493248 DOI: 10.3389/fnsyn.2021.733989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Both early life aversive experiences and intrinsic alterations in early postnatal neurodevelopment are considered predisposing factors for psychiatric disorders, such as schizophrenia. The prefrontal cortex and the hippocampus have protracted postnatal development and are affected in schizophrenic patients. Interestingly, similar alterations have been observed in the retrosplenial cortex (RSC). Studies in patients and animal models of schizophrenia have found alterations in cortical parvalbumin (PV) expressing interneurons, making them good candidates to study the etiopathology of this disorder. Some of the alterations observed in PV+ interneurons may be mediated by perineuronal nets (PNNs), specialized regions of the extracellular matrix, which frequently surround these inhibitory neurons. In this study, we have used a double hit model (DHM) combining a single perinatal injection of an NMDAR antagonist (MK801) to disturb early postnatal development and post-weaning social isolation as an early life aversive experience. We have investigated PV expressing interneurons and PNNs in the hippocampus and the RSC of adult male mice, using unbiased stereology. In the CA1, but not in the CA3 region, of the hippocampus, the number of PNNs and PV + PNN+ cells was affected by the drug treatment, and a significant decrease of these parameters was observed in the groups of animals that received MK801. The percentage of PNNs surrounding PV+ cells was significantly decreased after treatment in both hippocampal regions; however, the impact of isolation was observed only in CA1, where isolated animals presented lower percentages. In the RSC, we observed significant effects of isolation, MK801 and the interaction of both interventions on the studied parameters; in the DHM, we observed a significantly lower number of PV+, PNNs, and PV+PNN+cells when compared to control mice. Similar significant decreases were observed for the groups of animals that were just isolated or treated with MK801. To our knowledge, this is the first report on such alterations in the RSC in an animal model combining neurodevelopmental alterations and aversive experiences during infancy/adolescence. These results show the impact of early-life events on different cortical regions, especially on the structure and plasticity of PV+ neurons and their involvement in the emergence of certain psychiatric disorders.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Arianna Rizzo
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gómez
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Marc Beltran
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
4
|
Guan J, Ding Y, Rong Y, Geng Y, Lai L, Qi D, Tang Y, Yang L, Li J, Zhou T, Wu E, Wu R. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats. ACS Chem Neurosci 2020; 11:4169-4178. [PMID: 33179901 DOI: 10.1021/acschemneuro.0c00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early life stress (ELS) is associated with an increased risk of developing depression and anxiety disorders. Disturbances of the neurobiological glutamatergic system are implicated in depression; however, the long-term effects of ELS on glutamate (Glu) metabolites remain unclear. Our study used 7T proton magnetic resonance spectroscopy (7T 1H MRS) to detect metabolic Glu in a rat model to investigate maternal deprivation (MD)-induced ELS. MD was established in Sprague-Dawley rats by periodic separation from mothers and peers. Changes in the hippocampal volume and Glu metabolism were detected by 7T 1H MRS after testing for depression-like behavior via open field, sucrose preference, and Morris water maze tests. Adult MD offspring exhibited depression-like behavior. Compared to the control, the MD group exhibited reduced ratio of central activity time to total time and decreased sucrose consumption (p < 0.05). MD rats spent less time in the fourth quadrant, where the platform was originally placed, in the Morris water maze test. According to 7T 1H MRS, hippocampus of MD rats had elevated Glu and glutamate + glutamine (Glu+Gln) levels compared with the control group hippocampi, but Gln, γ-aminobutyric acid (GABA), and glutamate + glutamine (Glu+Gln) in the prefrontal cortex of MD rats showed a downward trend. Depression-like behavior and cognition deficits related to ELS may induce region-specific changes in Glu metabolism in the prefrontal cortex and hippocampus. The novel, noninvasive 7T 1H MRS-identified associations between Glu levels and ELS may guide future clinical studies.
Collapse
Affiliation(s)
- Jitian Guan
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yan Ding
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Yunjie Rong
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou 515031, China
| | - Lingfeng Lai
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lin Yang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juntao Li
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Department of Surgery, Texas A & M University Health Science Center College of Medicine, Temple 76508, Texas United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University Health Science Center, College Station, Texas 77843, United States
- LIVESTRONG Cancer Institutes, Dell Medical School, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Long-Term Effects of Maternal Deprivation on Redox Regulation in Rat Brain: Involvement of NADPH Oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7390516. [PMID: 28408971 PMCID: PMC5376945 DOI: 10.1155/2017/7390516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 01/16/2023]
Abstract
Maternal deprivation (MD) causes perinatal stress, with subsequent behavioral changes which resemble the symptoms of schizophrenia. The NADPH oxidase is one of the major generators of reactive oxygen species, known to play a role in stress response in different tissues. The aim of this study was to elucidate the long-term effects of MD on the expression of NADPH oxidase subunits (gp91phox, p22phox, p67phox, p47phox, and p40phox). Activities of cytochrome C oxidase and respiratory chain Complex I, as well as the oxidative stress parameters using appropriate spectrophotometric techniques were analyzed. Nine-day-old Wistar rats were exposed to a 24 h maternal deprivation and sacrificed at young adult age. The structures affected by perinatal stress, cortex, hippocampus, thalamus, and caudate nuclei were investigated. The most prominent findings were increased expressions of gp91phox in the cortex and hippocampus, increased expression of p22phox and p40phox, and decreased expression of gp91phox, p22phox, and p47phox in the caudate nuclei. Complex I activity was increased in all structures except cortex. Content of reduced glutathione was decreased in all sections while region-specific changes of other oxidative stress parameters were found. Our results indicate the presence of long-term redox alterations in MD rats.
Collapse
|
6
|
Wang Q, Shao F, Wang W. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci 2015; 8:49. [PMID: 26388728 PMCID: PMC4555027 DOI: 10.3389/fnmol.2015.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023] Open
Abstract
Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1-21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Psychology, Peking University Beijing, China
| | - Feng Shao
- Department of Psychology, Peking University Beijing, China
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|