1
|
Velikova T, Vasilev G, Shumnalieva R, Chervenkov L, Miteva DG, Gulinac M, Priftis S, Lazova S. Autoantibodies related to ataxia and other central nervous system manifestations of gluten enteropathy. World J Clin Cases 2024; 12:2031-2039. [PMID: 38680259 PMCID: PMC11045506 DOI: 10.12998/wjcc.v12.i12.2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Gluten ataxia and other central nervous system disorders could be linked to gluten enteropathy and related autoantibodies. In this narrative review, we focus on the various neuro-logical manifestations in patients with gluten sensitivity/celiac disease, immunological and autoimmune mechanisms of ataxia in connection to gluten sensitivity and the autoantibodies that could be used as a biomarker for diagnosing and following. We focused on the anti-gliadin antibodies, antibodies to different isoforms of tissue transglutaminase (TG) (anti-TG2, 3, and 6 antibodies), anti-glycine receptor antibodies, anti-glutamine acid decarboxylase antibodies, anti-deamidated gliadin peptides antibodies, etc. Most studies found a higher prevalence of these antibodies in patients with gluten sensitivity and neurological dysfunction, presented as different neurological disorders. We also discuss the role of a gluten-free diet on the clinical improvement of patients and also on imaging of these disorders.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
| | - Georgi Vasilev
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Clinic of Neurology and Department of Emergency Medicine, UMHAT "Sv. Georgi", Plovdiv 4000, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Dimitrina Georgieva Miteva
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Stamatios Priftis
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia 1407, Bulgaria
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Sofia 1407, Bulgaria
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
| |
Collapse
|
2
|
Rouvroye MD, Bontkes HJ, Bol JGJM, Lissenberg-Witte B, Byrnes V, Bennani F, Jordanova ES, Wilhelmus MMM, Mulder CJ, van der Valk P, Rozemuller AJM, Bouma G, Van Dam AM. Cerebellar presence of immune cells in patients with neuro-coeliac disease. Acta Neuropathol Commun 2023; 11:51. [PMID: 36966322 PMCID: PMC10040112 DOI: 10.1186/s40478-023-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/27/2023] Open
Abstract
Although various neurodegenerative disorders have been associated with coeliac disease (CD), the underlying neuropathological link between these brain and gut diseases remains unclear. We postulated that the neuronal damage sporadically observed in CD patients is immune-mediated. Our aim was to determine if the loss of neurons, especially Purkinje cells, coincides with microglia activation and T- and B-cell infiltration in the cerebellum of patients with CD and a concomitant idiopathic neurological disease affecting the cerebellum (NeuroCD). Post-mortem cerebellar tissue was collected of validated NeuroCD cases. Gender- and age-matched genetic spinocerebellar ataxia (SCA) controls and non-neurological controls (NNC) were selected based on clinical reports and pathological findings. Cerebellar tissue of seventeen patients was included (6 NeuroCD, 5 SCA, 6 NNC). In SCA cases we found that the Purkinje cell layer was 58.6% reduced in comparison with NNC. In NeuroCD cases this reduction was even more prominent with a median reduction of 81.3% compared to NNC. Marked increased numbers of both CD3+ and CD8+ cells were observed in the NeuroCD but not in SCA patients. This coincided with significantly more microglial reactivity in NeuroCD patients. These findings demonstrate that the massive loss of Purkinje cells in the cerebellum of neuro CD patients is accompanied by local innate and T-cell mediated immune responses.
Collapse
Affiliation(s)
- Maxine D Rouvroye
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Spaarne Gasthuis, Boerhavelaan 22, 2035 RC, Haarlem, The Netherlands
| | - Hetty J Bontkes
- Medical Immunology Laboratory, Department of Clinical Chemistry, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Birgit Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Valerie Byrnes
- Department of Gastroenterology and Hepatology, Galway University Hospitals, Galway, Ireland
| | - Fadel Bennani
- Department of Pathology, Mayo University Hospital, National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| | - Ekaterina S Jordanova
- Department of Gynecology and Obstetrics, Center for Gynecologic Oncology Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Chris J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie Van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Edwards George JB, Aideyan B, Yates K, Voorhees KN, O’Flynn J, Sweet K, Avery K, Ehrlich A, Bast A, Leffler DA. Gluten-induced Neurocognitive Impairment: Results of a Nationwide Study. J Clin Gastroenterol 2022; 56:584-591. [PMID: 34049371 PMCID: PMC9256899 DOI: 10.1097/mcg.0000000000001561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
GOALS This study aimed to understand the neurocognitive symptoms associated with gluten exposure in individuals with self-reported celiac disease (CD) and nonceliac gluten sensitivity (NCGS). BACKGROUND While gluten-induced neurocognitive impairment (GINI; eg, "celiac fog" or "brain fog") is commonly described by individuals with CD and NCGS, there are little data regarding the prevalence and symptoms associated with these experiences. STUDY A 9-question online survey was accessed by 1396 individuals (1143 with CD; 253 with NCGS). Forced choice and free-response questions were asked of participants to obtain a description of neurocognitive symptoms experienced after gluten ingestion. Free-response answers were coded using a coding structure developed based on the Health-Related Quality of Life Instrument. RESULTS The majority of survey participants (89% of CD and 95% of NCGS) reported having GINI symptoms. When describing symptoms, the most common word descriptors for both groups were difficulty concentrating, forgetfulness, and grogginess. Timing of symptoms, including onset and symptom peak, were similar across the 2 groups. Coding of free responses found the most common references were to cognitive, physical, psychological, and overall quality of life impacts. CONCLUSIONS This survey suggests that GINI is common and may be severe in both individuals with CD and NCGS. Cognitive impairment and decline in physical functioning may be similar to that occurring in other illnesses, such as lupus. Clinical follow-up with both individuals with CD and NCGS should include assessment of GINI symptoms. Further research is warranted, including the development of a patient-reported outcome measure including neurocognitive effects of gluten exposure.
Collapse
Affiliation(s)
- Jessica B. Edwards George
- Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | - Babatunde Aideyan
- Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | - Kayla Yates
- Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | | | - Jennifer O’Flynn
- Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | | | | | - Alan Ehrlich
- Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester
| | | | - Daniel A. Leffler
- Takeda, Cambridge
- Celiac Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
TG6 Auto-Antibodies in Dermatitis Herpetiformis. Nutrients 2020; 12:nu12092884. [PMID: 32967363 PMCID: PMC7551372 DOI: 10.3390/nu12092884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dermatitis herpetiformis (DH) is an extraintestinal manifestation of gluten sensitivity, in which an autoimmune response is directed against transglutaminase 3 (TG3), an epidermal transglutaminase. TG2 is the autoantigen in celiac disease (CD), defined by the presence of enteropathy, and TG6 is the autoantigen in neurological manifestations of gluten sensitivity. The interplay between B cell responses to these 3 transglutaminases in developing the clinical spectrum of disease manifestations is not completely understood. Also, the individual or combined diagnostic and predictive value of the respective autoantibodies is not fully explored. We examined the prevalence of TG6 antibodies in a cohort of patients with DH. TG6 positivity was found in 13/33 (39%), with IgA detected in 11 patients, IgG in 3, and both in 1. This was significantly higher compared to what is seen in the classic CD cases (14%) in a Finnish population. TG6 positive baseline samples constituted 60% of DH patients with no enteropathy (n = 10), as opposed to 17% positivity in those with overt enteropathy (n = 12; Marsh IIIB). Repeat testing after adherence to a gluten-free diet for 1 year showed reduced titers for TG6 antibodies in 11/13 (85%), whereby 7 patients were now TG6 antibody-negative. Four patients seroconverted and tested positive for TG6 antibodies at one year, due to the ongoing exposure to gluten. We report another patient who presented with neurological manifestations (encephalopathy) leading to the diagnosis of CD, who was intermittently adhering to a gluten-free diet. Serological testing at baseline showed him to be positive for antibodies to all 3 transglutaminases. Eleven years later, he developed DH. He also subsequently developed ataxia and peripheral neuropathy. Although TG3 and TG6 autoantibodies are linked to certain disease manifestations, TG2, TG3, and TG6 autoantibodies can be present across the spectrum of GRD patients and might develop years before onset of symptoms of extraintestinal manifestations. This is consistent with gluten-dependent adaptive immunity being a necessary but not sufficient pretext to organ-specific damage. TG6 antibodies appear to develop more frequently in patients where tolerance to gluten was broken but, either there was no development of the molecular state driving the tissue destruction at the level of the gut, or perhaps more likely, there was more resistance to developing this phenotype.
Collapse
|
5
|
Balint B, Vincent A, Meinck HM, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain 2018; 141:13-36. [PMID: 29053777 PMCID: PMC5888977 DOI: 10.1093/brain/awx189] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Movement disorders are a prominent and common feature in many autoantibody-associated neurological diseases, a group of potentially treatable conditions that can mimic infectious, metabolic or neurodegenerative disease. Certain movement disorders are likely to associate with certain autoantibodies; for example, the characteristic dyskinesias, chorea and dystonia associated with NMDAR antibodies, stiff person spectrum disorders with GAD, glycine receptor, amphiphysin or DPPX antibodies, specific paroxysmal dystonias with LGI1 antibodies, and cerebellar ataxia with various anti-neuronal antibodies. There are also less-recognized movement disorder presentations of antibody-related disease, and a considerable overlap between the clinical phenotypes and the associated antibody spectra. In this review, we first describe the antibodies associated with each syndrome, highlight distinctive clinical or radiological 'red flags', and suggest a syndromic approach based on the predominant movement disorder presentation, age, and associated features. We then examine the underlying immunopathophysiology, which may guide treatment decisions in these neuroimmunological disorders, and highlight the exceptional interface between neuronal antibodies and neurodegeneration, such as the tauopathy associated with IgLON5 antibodies. Moreover, we elaborate the emerging pathophysiological parallels between genetic movement disorders and immunological conditions, with proteins being either affected by mutations or targeted by autoantibodies. Hereditary hyperekplexia, for example, is caused by mutations of the alpha subunit of the glycine receptor leading to an infantile-onset disorder with exaggerated startle and stiffness, whereas antibodies targeting glycine receptors can induce acquired hyperekplexia. The spectrum of such immunological and genetic analogies also includes cerebellar ataxias and some encephalopathies. Lastly, we discuss how these pathophysiological considerations could reflect on possible future directions regarding antigen-specific immunotherapies or targeting the pathophysiological cascades downstream of the antibody effects.
Collapse
Affiliation(s)
- Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Neurology, University Hospital, Heidelberg, Germany
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Angela Vincent
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | | | - Sarosh R Irani
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|