1
|
Altissimi C, Noé-Nordberg C, Ranucci D, Paulsen P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat-A Literature Survey for the Period 2012-2022. Foods 2023; 12:foods12081689. [PMID: 37107481 PMCID: PMC10137515 DOI: 10.3390/foods12081689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The wild boar is an abundant game species with high reproduction rates. The management of the wild boar population by hunting contributes to the meat supply and can help to avoid a spillover of transmissible animal diseases to domestic pigs, thus compromising food security. By the same token, wild boar can carry foodborne zoonotic pathogens, impacting food safety. We reviewed literature from 2012-2022 on biological hazards, which are considered in European Union legislation and in international standards on animal health. We identified 15 viral, 10 bacterial, and 5 parasitic agents and selected those nine bacteria that are zoonotic and can be transmitted to humans via food. The prevalence of Campylobacter, Listeria monocytogenes, Salmonella, Shiga toxin-producing E. coli, and Yersinia enterocolitica on muscle surfaces or in muscle tissues of wild boar varied from 0 to ca. 70%. One experimental study reported the transmission and survival of Mycobacterium on wild boar meat. Brucella, Coxiella burnetii, Listeria monocytogenes, and Mycobacteria have been isolated from the liver and spleen. For Brucella, studies stressed the occupational exposure risk, but no indication of meat-borne transmission was evident. Furthermore, the transmission of C. burnetii is most likely via vectors (i.e., ticks). In the absence of more detailed data for the European Union, it is advisable to focus on the efficacy of current game meat inspection and food safety management systems.
Collapse
Affiliation(s)
- Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | | | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
2
|
Brusa V, Costa M, Padola NL, Etcheverría A, Sampedro F, Fernandez PS, Leotta GA, Signorini ML. Quantitative risk assessment of haemolytic uremic syndrome associated with beef consumption in Argentina. PLoS One 2020; 15:e0242317. [PMID: 33186398 PMCID: PMC7665811 DOI: 10.1371/journal.pone.0242317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
We developed a quantitative microbiological risk assessment (QMRA) of haemolytic uremic syndrome (HUS) associated with Shiga toxin-producing Escherichia coli (STEC)-contaminated beef (intact beef cuts, ground beef and commercial hamburgers) in children under 15 years of age from Argentina. The QMRA was used to characterize STEC prevalence and concentration levels in each product through the Argentinean beef supply chain, including cattle primary production, cattle transport, processing and storage in the abattoir, retail and home preparation, and consumption. Median HUS probability from beef cut, ground beef and commercial hamburger consumption was <10-15, 5.4x10-8 and 3.5x10-8, respectively. The expected average annual number of HUS cases was 0, 28 and 4, respectively. Risk of infection and HUS probability were sensitive to the type of abattoir, the application or not of Hazard Analysis and Critical Control Points (HACCP) for STEC (HACCP-STEC), stx prevalence in carcasses and trimmings, storage conditions from the abattoir to retailers and home, the joint consumption of salads and beef products, and cooking preference. The QMRA results showed that the probability of HUS was higher if beef cuts (1.7x) and ground beef (1.2x) were from carcasses provided by abattoirs not applying HACCP-STEC. Thus, the use of a single sanitary standard that included the application of HACCP-STEC in all Argentinean abattoirs would greatly reduce HUS incidence. The average number of annual HUS cases estimated by the QMRA (n = 32) would explain about 10.0% of cases in children under 15 years per year in Argentina. Since other routes of contamination can be involved, including those not related to food, further research on the beef production chain, other food chains, person-to-person transmission and outbreak studies should be conducted to reduce the impact of HUS on the child population of Argentina.
Collapse
Affiliation(s)
- Victoria Brusa
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Nora L. Padola
- CIVETAN–Centro de Investigación Veterinaria de Tandil (CONICET-UNCPBA-CICPBA), Facultad de Ciencias Veterinarias—UNCPBA, Buenos Aires, Argentina
| | - Analía Etcheverría
- CIVETAN–Centro de Investigación Veterinaria de Tandil (CONICET-UNCPBA-CICPBA), Facultad de Ciencias Veterinarias—UNCPBA, Buenos Aires, Argentina
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, United States of America
| | - Pablo S. Fernandez
- Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, España
| | - Gerardo A. Leotta
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Marcelo L. Signorini
- IdICaL–Instituto de Investigación de la Cadena Láctea–(INTA–CONICET), Santa Fe, Argentina
| |
Collapse
|
3
|
Tomino Y, Andoh M, Horiuchi Y, Shin J, Ai R, Nakamura T, Toda M, Yonemitsu K, Takano A, Shimoda H, Maeda K, Kodera Y, Oshima I, Takayama K, Inadome T, Shioya K, Fukazawa M, Ishihara K, Chuma T. Surveillance of Shiga toxin-producing Escherichia coli and Campylobacter spp. in wild Japanese deer (Cervus nippon) and boar (Sus scrofa). J Vet Med Sci 2020; 82:1287-1294. [PMID: 32655094 PMCID: PMC7538328 DOI: 10.1292/jvms.19-0265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing game meat consumption in Japan requires the dissemination of safety information regarding the presence of human pathogens in game animals. Health information regarding the suitability of these animals as a meat source is not widely available. In this study, we aimed to evaluate
the safety of game meat and detect potential human pathogens in wild deer (Cervus nippon) and boar (Sus scrofa) in Japan. Fecal samples from 305 wild deer and 248 boars of Yamaguchi, Kagoshima, and Tochigi prefectures collected monthly for 2 years were
examined for the prevalence of Shiga toxin-producing Escherichia coli (STEC) and Campylobacter spp. STEC was isolated from 51 deer consistently throughout the year and from three boars; O-antigen genotype O146, the expression of stx2b, and
eaeA absence (n=33) were the major characteristics of our STEC isolates. Other serotypes included the medically important O157, stx2b or stx2c, and eaeA-positive (n=4) and O26, stx1a, and
eaeA-positive strains (n=1). Campylobacter spp. were isolated from 17 deer and 31 boars. Campylobacter hyointestinalis was the most common species isolated from 17 deer and 25 boars, whereas Campylobacter lanienae and
Campylobacter coli were isolated from three and two boars, respectively. Seasonal trends for the isolation of these bacteria were not significant. This study demonstrates that wild game animals carry human pathogens; therefore, detailed knowledge of the safe handling of
game meat is needed to prevent foodborne infections.
Collapse
Affiliation(s)
- Yoshiyuki Tomino
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masako Andoh
- Laboratory of Pathological and Preventive Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Yuta Horiuchi
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Jiye Shin
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Ryunosuke Ai
- Laboratory of Pathological and Preventive Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Takaki Nakamura
- Laboratory of Pathological and Preventive Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Mizuki Toda
- Laboratory of Pathological and Preventive Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Kenzo Yonemitsu
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yamaguchi, Yamaguchi 753-8515, Japan
| | - Ai Takano
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yamaguchi, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yamaguchi, Yamaguchi 753-8515, Japan
| | - Ken Maeda
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yamaguchi, Yamaguchi 753-8515, Japan
| | - Yuuji Kodera
- Center for Weed and Wildlife Management, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Koji Takayama
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Takayasu Inadome
- General Incorporated Foundation Kagoshima Environmental Research and Service, 1-1-5 Nanatsujima, Kagoshima, Kagoshima 891-0132, Japan
| | - Katsunori Shioya
- General Incorporated Foundation Kagoshima Environmental Research and Service, 1-1-5 Nanatsujima, Kagoshima, Kagoshima 891-0132, Japan
| | - Motoki Fukazawa
- Tamagawa University Farm Kushi, Kagoshima, 880 Bonotsucho Kushi, Misamisatuma, Kagoshima 898-0211, Japan
| | - Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takehisa Chuma
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan.,Laboratory of Pathological and Preventive Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Salinas Ibáñez ÁG, Lucero Estrada C, Favier GI, Vega AE, Stagnitta PV, Mattar MA, Zolezzi G, Carbonari C, Miliwebsky E, Cortiñas TI, Escudero ME. Characterization of Shiga-toxin producingEscherichia coliisolated from meat products sold in San Luis, Argentina. J Food Saf 2018. [DOI: 10.1111/jfs.12488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Cecilia Lucero Estrada
- Microbiologia Area, National University of San Luis; San Luis Argentina
- Multidisciplinary Institute of Biological Researches, National Council of Scientific and Technological Researches (IMIBIO-CONICET); San Luis Argentina
| | | | - Alba Edith Vega
- Microbiologia Area, National University of San Luis; San Luis Argentina
| | | | - María Aída Mattar
- Microbiologia Area, National University of San Luis; San Luis Argentina
| | - Gisela Zolezzi
- STEC National Reference Laboratory at the ANLIS-INEI “Dr. Carlos G. Malbran” Institute; Ciudad Autónoma de Buenos Aires; Argentina
| | - Carolina Carbonari
- STEC National Reference Laboratory at the ANLIS-INEI “Dr. Carlos G. Malbran” Institute; Ciudad Autónoma de Buenos Aires; Argentina
| | - Elizabeth Miliwebsky
- STEC National Reference Laboratory at the ANLIS-INEI “Dr. Carlos G. Malbran” Institute; Ciudad Autónoma de Buenos Aires; Argentina
| | | | | |
Collapse
|
5
|
Lucero-Estrada CSM, Soria JM, Favier GI, Escudero ME. Evaluation of the pathogenic potential, antimicrobial susceptibility, and genomic relations of Yersinia enterocolitica strains from food and human origin. Can J Microbiol 2015; 61:851-60. [PMID: 26370735 DOI: 10.1139/cjm-2015-0391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yersinia enterocolitica is a food-borne pathogen that causes gastroenteritis with occasional postinfection sequels. This study was aimed to determinate the pathogenic potential, antimicrobial susceptibility, and genomic relationships of Y. enterocolitica strains of different bioserotypes (B/O) isolated from foods and human samples in San Luis, Argentina. Strains obtained by culture were bioserotyped and characterized by phenotypic and genotypic virulence markers, antimicrobial susceptibility, and pulsed-field gel electrophoresis (PFGE). Yersinia enterocolitica was detected in 9.2% of 380 samples, with a distribution of 10.6% (30/284) for food products and 5.2% (5/96) for human samples. Regarding the pathogenic potential, B1A strains of different serotypes were virF(-) ail(-), of which 72.0% (13/18) were ystB(+) with virulence-related phenotypic characteristics. Among B2/O:9 isolates, 75.0% (9/12) exhibited the genotype virF(+) ail(+) ystB(-) along with phenotypic traits associated with virulence; the same genotype was observed in 80.0% (4/5) of B3/O:3 and B3/O:5 strains. By PFGE, it was possible to separate Y. enterocolitica biotypes into 4 clonal groups (A to D) with 23 genomic types, generating a discriminatory index of 0.96. All isolates were susceptible to antimicrobials used for clinical treatment. This study highlights the presence of pathogenic bioserotypes and the high genomic diversity of the Y. enterocolitica strains isolated in our region.
Collapse
Affiliation(s)
- Cecilia S M Lucero-Estrada
- a Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, Bloque 1, 1° Piso, 5700, San Luis, Argentina.,b Instituto Multidisciplinario de Investigaciones Biológicas - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMIBIO-CONICET), Ejército de los Andes 950, Bloque 1, 1° Piso, 5700, San Luis, Argentina
| | - José Miguel Soria
- a Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, Bloque 1, 1° Piso, 5700, San Luis, Argentina
| | - Gabriela Isabel Favier
- a Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, Bloque 1, 1° Piso, 5700, San Luis, Argentina
| | - María Esther Escudero
- a Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, Bloque 1, 1° Piso, 5700, San Luis, Argentina
| |
Collapse
|