1
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
2
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
3
|
Wang CK, Nelepcu I, Hui D, Oo HZ, Truong S, Zhao S, Tahiry Z, Esfandnia S, Ghaidi F, Adomat H, Dagil R, Gustavsson T, Choudhary S, Salanti A, Sorensen PH, Al Nakouzi N, Daugaard M. Internalization and trafficking of CSPG-bound recombinant VAR2CSA lectins in cancer cells. Sci Rep 2022; 12:3075. [PMID: 35197518 PMCID: PMC8866492 DOI: 10.1038/s41598-022-07025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.
Collapse
Affiliation(s)
- Chris Kedong Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Irina Nelepcu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Desmond Hui
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Sarah Truong
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Sarah Zhao
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Zakir Tahiry
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | | | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Robert Dagil
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark.,VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark.,VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark.,VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark.,VAR2 Pharmaceuticals, Copenhagen, Denmark
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nader Al Nakouzi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Vancouver Prostate Centre, Vancouver, BC, Canada. .,VAR2 Pharmaceuticals, Copenhagen, Denmark.
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Vancouver Prostate Centre, Vancouver, BC, Canada. .,VAR2 Pharmaceuticals, Copenhagen, Denmark.
| |
Collapse
|
5
|
Simsek G, Sari E, Kilic R, Bayar Muluk N. Topical Application of Arnica and Mucopolysaccharide Polysulfate Attenuates Periorbital Edema and Ecchymosis in Open Rhinoplasty: A Randomized Controlled Clinical Study. Plast Reconstr Surg 2016; 137:530e-535e. [PMID: 26910697 DOI: 10.1097/01.prs.0000479967.94459.1c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the effects of local arnica and mucopolysaccharide polysulfate treatment on the regression of postoperative edema and ecchymosis in patients who have undergone open technique rhinoplasty. METHOD One hundred eight patients were included in the study. Participants were randomized into three groups, all of whom had undergone rhinoplasty. Group 1 (n = 36) received postoperative arnica cream treatment, and group 2 (n = 36) received postoperative mucopolysaccharide polysulfate cream treatment. Group 3 (n = 36, control group) consisted of patients who received no postoperative local treatments. Patients were evaluated for 24 hours on days 2, 5, 7, and 10 after the operation. For the evaluation of postoperative edema and ecchymosis, a scale ranging from 0 to 4 was used, and the groups were compared. RESULTS In groups 1 and 2, postoperative ecchymosis was significantly less than in the control group during postoperative days 1, 5, and 7 (p < 0.005). The regression of the edema was also more rapid in groups 1 and 2 than in the control group during evaluations on postoperative days 1, 5, and 7 (p < 0.005). Neither edema nor ecchymosis was significantly different between groups 1 and 2 (p > 0.005). CONCLUSIONS The authors' results suggest that a rapid regression of edema and ecchymosis may be achieved by local treatments of arnica and mucopolysaccharide polysulfate cream. In addition, there are no significant differences between these two treatment regimens. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
- Gokce Simsek
- Kirikkale, Turkey From the Ear, Nose, and Throat and Plastic, Reconstructive and Aesthetic Surgery Departments, Kirikkale University, Faculty of Medicine
| | | | | | | |
Collapse
|