1
|
Hoshi H, Hirata Y, Fukasawa K, Kobayashi M, Shigihara Y. Oscillatory characteristics of resting-state magnetoencephalography reflect pathological and symptomatic conditions of cognitive impairment. Front Aging Neurosci 2024; 16:1273738. [PMID: 38352236 PMCID: PMC10861731 DOI: 10.3389/fnagi.2024.1273738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Background Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets. Therefore, this study aimed to investigate the relationships among MEG oscillatory parameters, clinically validated biomarkers computed from rCBF, and NPAs using outpatient data retrieved from hospital records. Methods Clinical data from 64 individuals with mixed pathological backgrounds were retrieved and analysed. MEG oscillatory parameters, including relative power (RP) from delta to high gamma bands, mean frequency, individual alpha frequency, and Shannon's spectral entropy, were computed for each cortical region. For SPECT data, three pathological parameters-'severity', 'extent', and 'ratio'-were computed using an easy z-score imaging system (eZIS). As for NPAs, the MMSE and FAB scores were retrieved. Results MEG oscillatory parameters were correlated with eZIS parameters. The eZIS parameters associated with Alzheimer's disease pathology were reflected in theta power augmentation and slower shift of the alpha peak. Moreover, MEG oscillatory parameters were found to reflect NPAs. Global slowing and loss of diversity in neural oscillatory components correlated with MMSE and FAB scores, whereas the associations between eZIS parameters and NPAs were sparse. Conclusion MEG oscillatory parameters correlated with both SPECT (i.e. eZIS) parameters and NPAs, supporting the clinical validity of MEG oscillatory parameters as pathological and symptomatic indicators. The findings indicate that various components of MEG oscillatory characteristics can provide valuable pathological and symptomatic information, making MEG data a rich resource for clinical examinations of patients with cognitive impairments. SPECT (i.e. eZIS) parameters showed no correlations with NPAs. The results contributed to a better understanding of the characteristics of electrophysiological and pathological examinations for patients with cognitive impairments, which will help to facilitate their co-use in clinical application, thereby improving patient care.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Yoko Hirata
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya, Japan
| | | | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
2
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
3
|
Lim HJ, Park JE, Kim BC, Choi SM, Song MK, Cho SH, Seo HJ, Kim J, Song HC, Choi KY, Lee JJ, Kim HW, Ha JM, Song WK, Park SG, Lee JS, Lee KH. Comparison of Two Analytical Platforms in Cerebrospinal Fluid Biomarkers for the Classification of Alzheimer's Disease Spectrum with Amyloid PET Imaging. J Alzheimers Dis 2021; 75:949-958. [PMID: 32390627 DOI: 10.3233/jad-191331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42), total tau protein (t-Tau), and phosphorylated Tau (p-Tau) are ATN biomarkers for Alzheimer's disease (AD) and reflect pathogenic changes in the brain. CSF biomarkers of AD are considered for inclusion in the diagnostic criteria for research and clinical purposes to reduce the uncertainty of clinical diagnosis and to distinguish among AD stages. OBJECTIVE This study aims to compare two commercially available analytical platforms with respect to accuracy and the potential for early diagnosis of AD. METHODS A total of 211 CSF samples from healthy control (HC) and AD subjects were analyzed using two analytical platforms, INNOTEST ELISA and INNOBIA AlzBio3 xMAP kits. The accuracy of diagnosis and AUC values distinguishing study groups were compared between the two analytical platforms. RESULTS The absolute values for Aβ1-42, t-Tau, and p-Tau181 levels differed between the two platforms. The Aβ1-42 levels decreased, while t-Tau and p-Tau levels increased according to the AD stages. The AUC of Aβ1-42 and t-Tau, which distinguish the early stages of AD (preclinical and prodromal AD), were similar between the two platforms, whereas there were significant differences in p-Tau AUC values. CSF p-Tau using the INNOBIA was highly accurate for distinguishing both preclinical AD (AUC = 0.826, cut-off score≥38.89) and prodromal AD (AUC = 0.862, cut-off score≥41.88) from HC. CONCLUSION The accuracy of CSF p-Tau levels in the preclinical and prodromal AD is higher for the INNOBIA than the INNOTEST, and the early stage AD can be accurately distinguished from HC.
Collapse
Affiliation(s)
- Ho Jae Lim
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Jung Eun Park
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyeon Jeong Seo
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea
| | - Hoo-Won Kim
- Department of Neurology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jung-Min Ha
- Department of Nuclear Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Woo Keun Song
- Department of Life Science, Bioimaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sung-Gyoo Park
- Department of Life Science, Bioimaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
4
|
Chávez-Fumagalli MA, Shrivastava P, Aguilar-Pineda JA, Nieto-Montesinos R, Del-Carpio GD, Peralta-Mestas A, Caracela-Zeballos C, Valdez-Lazo G, Fernandez-Macedo V, Pino-Figueroa A, Vera-Lopez KJ, Lino Cardenas CL. Diagnosis of Alzheimer's Disease in Developed and Developing Countries: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J Alzheimers Dis Rep 2021; 5:15-30. [PMID: 33681713 PMCID: PMC7902992 DOI: 10.3233/adr-200263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present systematic review and meta-analysis of diagnostic test accuracy summarizes the last three decades in advances on diagnosis of Alzheimer's disease (AD) in developed and developing countries. OBJECTIVE To determine the accuracy of biomarkers in diagnostic tools in AD, for example, cerebrospinal fluid, positron emission tomography (PET), and magnetic resonance imaging (MRI), etc. METHODS The authors searched PubMed for published studies from 1990 to April 2020 on AD diagnostic biomarkers. 84 published studies were pooled and analyzed in this meta-analysis and diagnostic accuracy was compared by summary receiver operating characteristic statistics. RESULTS Overall, 84 studies met the criteria and were included in a meta-analysis. For EEG, the sensitivity ranged from 67 to 98%, with a median of 80%, 95% CI [75, 91], tau-PET diagnosis sensitivity ranged from 76 to 97%, with a median of 94%, 95% CI [76, 97]; and MRI sensitivity ranged from 41 to 99%, with a median of 84%, 95% CI [81, 87]. Our results showed that tau-PET diagnosis had higher performance as compared to other diagnostic methods in this meta-analysis. CONCLUSION Our findings showed an important discrepancy in diagnostic data for AD between developed and developing countries, which can impact global prevalence estimation and management of AD. Also, our analysis found a better performance for the tau-PET diagnostic over other methods to diagnose AD patients, but the expense of tau-PET scan seems to be the limiting factor in the diagnosis of AD in developing countries such as those found in Asia, Africa, and Latin America.
Collapse
Affiliation(s)
- Miguel A. Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Jorge A. Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Antero Peralta-Mestas
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Claudia Caracela-Zeballos
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Guillermo Valdez-Lazo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Victor Fernandez-Macedo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Alejandro Pino-Figueroa
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Karin J. Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Christian L. Lino Cardenas
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Golriz Khatami S, Robinson C, Birkenbihl C, Domingo-Fernández D, Hoyt CT, Hofmann-Apitius M. Challenges of Integrative Disease Modeling in Alzheimer's Disease. Front Mol Biosci 2020; 6:158. [PMID: 31993440 PMCID: PMC6971060 DOI: 10.3389/fmolb.2019.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Dementia-related diseases like Alzheimer's Disease (AD) have a tremendous social and economic cost. A deeper understanding of its underlying pathophysiologies may provide an opportunity for earlier detection and therapeutic intervention. Previous approaches for characterizing AD were targeted at single aspects of the disease. Yet, due to the complex nature of AD, the success of these approaches was limited. However, in recent years, advancements in integrative disease modeling, built on a wide range of AD biomarkers, have taken a global view on the disease, facilitating more comprehensive analysis and interpretation. Integrative AD models can be sorted in two primary types, namely hypothetical models and data-driven models. The latter group split into two subgroups: (i) Models that use traditional statistical methods such as linear models, (ii) Models that take advantage of more advanced artificial intelligence approaches such as machine learning. While many integrative AD models have been published over the last decade, their impact on clinical practice is limited. There exist major challenges in the course of integrative AD modeling, namely data missingness and censoring, imprecise human-involved priori knowledge, model reproducibility, dataset interoperability, dataset integration, and model interpretability. In this review, we highlight recent advancements and future possibilities of integrative modeling in the field of AD research, showcase and discuss the limitations and challenges involved, and finally, propose avenues to address several of these challenges.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christine Robinson
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Colin Birkenbihl
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
6
|
Ganguli M, Albanese E, Seshadri S, Bennett DA, Lyketsos C, Kukull WA, Skoog I, Hendrie HC. Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health. Alzheimer Dis Assoc Disord 2018; 32:1-9. [PMID: 29319603 PMCID: PMC5821530 DOI: 10.1097/wad.0000000000000237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over recent decades, epidemiology has made significant contributions to our understanding of dementia, translating scientific discoveries into population health. Here, we propose reframing dementia epidemiology as "population neuroscience," blending techniques and models from contemporary neuroscience with those of epidemiology and biostatistics. On the basis of emerging evidence and newer paradigms and methods, population neuroscience will minimize the bias typical of traditional clinical research, identify the relatively homogenous subgroups that comprise the general population, and investigate broader and denser phenotypes of dementia and cognitive impairment. Long-term follow-up of sufficiently large study cohorts will allow the identification of cohort effects and critical windows of exposure. Molecular epidemiology and omics will allow us to unravel the key distinctions within and among subgroups and better understand individuals' risk profiles. Interventional epidemiology will allow us to identify the different subgroups that respond to different treatment/prevention strategies. These strategies will inform precision medicine. In addition, insights into interactions between disease biology, personal and environmental factors, and social determinants of health will allow us to measure and track disease in communities and improve population health. By placing neuroscience within a real-world context, population neuroscience can fulfill its potential to serve both precision medicine and population health.
Collapse
Affiliation(s)
- Mary Ganguli
- Departments of Psychiatry and Neurology, School of Medicine and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Constantine Lyketsos
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Hugh C Hendrie
- Regenstrief Institute Inc., Indiana University Center for Aging Research, Indianapolis, IN
| |
Collapse
|
7
|
Safavi M, Sabourian R, Abdollahi M. The development of biomarkers to reduce attrition rate in drug discovery focused on oncology and central nervous system. Expert Opin Drug Discov 2016; 11:939-56. [DOI: 10.1080/17460441.2016.1217196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
McGuire MJ, Ishii M. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies. Cell Mol Neurobiol 2016; 36:203-17. [PMID: 26993509 DOI: 10.1007/s10571-015-0282-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer's disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools.
Collapse
Affiliation(s)
- Matthew J McGuire
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Rizzi L, Roriz-Cruz M. Cerebrospinal fluid inflammatory markers in amnestic mild cognitive impairment. Geriatr Gerontol Int 2016; 17:239-245. [PMID: 26818250 DOI: 10.1111/ggi.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
AIMS Inflammatory processes might play a significant role at the pathophysiology of Alzheimer's disease (AD). Neuroinflammation is characterized by activation of microglia and the release of inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. Although, it is unknown what the real contribution of these inflammatory markers in the development of AD is. The purpose of the present study was to assess the possible relationship between inflammatory markers in the cerebrospinal fluid (CSF) of amnestic mild cognitive impairment patients (aMCI), aged 60 years or older, and compare with aged healthy controls. METHODS We examined concentrations of IL-1β, IL-6 and tumor necrosis factor-α in the CSF of aMCI patients and controls by enzyme immunoassay. aMCI diagnoses were based on anamnesis and Petersen criteria, corroborated by the Clinical Dementia Rating. Cognitive function was assessed by neuropsychological tests. RESULTS CSF levels of IL-1β (13.735 vs 22.932 pg/mL; P < 0.001) and tumor necrosis factor-α (1.913 vs 2.627 pg/mL; P = 0.002), but not IL-6 (4.178 vs 5.689 pg/mL; P = 0.106), were significantly reduced in the aMCI samples as compared with controls. Individuals with IL-1β < 17 pg/mL were at a 7.2 (CI 1.5-36; P: 0.016) increased odds of aMCI. There was a positive correlation between IL-1β levels and the Consortium to Establish a Registry for Alzheimer's Disease word list score (rs = 0.299; P = 0.046). Linear regression analysis showed that IL-1β levels might explain 13.7% (β = 24.545; P = 0.012) of the variance on this Consortium to Establish a Registry for Alzheimer's Disease subscore. CONCLUSION The present results show a pattern of cytokines expression in the CSF of aMCI patients that might be relevant to the pathogeny of prodromal AD. Geriatr Gerontol Int 2017; 17: 239-245.
Collapse
Affiliation(s)
- Liara Rizzi
- Division of Geriatric Neurology, Service of Neurology, Clinical Hospital of Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matheus Roriz-Cruz
- Division of Geriatric Neurology, Service of Neurology, Clinical Hospital of Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Abstract
Electron microscopy has enlarged the visual horizons of the morphological alterations in Alzheimer's disease (AD). Study of the mitochondria and Golgi apparatus in early cases of AD revealed the principal role that these important organelles play in the drama of pathogenic dialog of AD, substantially affecting energy production and supply, and protein trafficking in neurons and glia. In addition, study of the morphological alterations of the dendritic arbor, dendritic spines and neuronal synapses, which are associated with mitochondrial damage, may reasonably interpret the clinical phenomena of the irreversible decline of the mental faculties and an individual's personality changes. Electron microscopy also reveals the involvement of microvascular alterations in the etiopathogenic background of AD.
Collapse
|
11
|
Witte MM, Foster NL, Fleisher AS, Williams MM, Quaid K, Wasserman M, Hunt G, Roberts JS, Rabinovici GD, Levenson JL, Hake AM, Hunter CA, Van Campen LE, Pontecorvo MJ, Hochstetler HM, Tabas LB, Trzepacz PT. Clinical use of amyloid-positron emission tomography neuroimaging: Practical and bioethical considerations. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2015; 1:358-67. [PMID: 27239516 PMCID: PMC4878065 DOI: 10.1016/j.dadm.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Until recently, estimation of β-amyloid plaque density as a key element for identifying Alzheimer's disease (AD) pathology as the cause of cognitive impairment was only possible at autopsy. Now with amyloid-positron emission tomography (amyloid-PET) neuroimaging, this AD hallmark can be detected antemortem. Practitioners and patients need to better understand potential diagnostic benefits and limitations of amyloid-PET and the complex practical, ethical, and social implications surrounding this new technology. To complement the practical considerations, Eli Lilly and Company sponsored a Bioethics Advisory Board to discuss ethical issues that might arise from clinical use of amyloid-PET neuroimaging with patients being evaluated for causes of cognitive decline. To best address the multifaceted issues associated with amyloid-PET neuroimaging, we recommend this technology be used only by experienced imaging and treating physicians in appropriately selected patients and only in the context of a comprehensive clinical evaluation with adequate explanations before and after the scan.
Collapse
Affiliation(s)
- Michael M. Witte
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Norman L. Foster
- Center for Alzheimer's Care, Imaging and Research, Department of Neurology, The Brain Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Monique M. Williams
- IPC The Hospitalist Company, Inc., St. Louis, MO, USA
- VITAS Innovative Hospice, St. Louis, MO, USA
| | - Kimberly Quaid
- Indiana University Center for Bioethics, Indianapolis, IN, USA
| | - Michael Wasserman
- Division of Geriatric Medicine, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Gail Hunt
- National Alliance for Caregiving, Bethesda, MD, USA
| | - J. Scott Roberts
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Gil D. Rabinovici
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - James L. Levenson
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ann Marie Hake
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Craig A. Hunter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Linda B. Tabas
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Paula T. Trzepacz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Abstract
Alzheimer's disease (AD) is one of the most debilitating neurodegenerative diseases and is predicted to affect 1 in 85 people by 2050. Despite much effort to discover a therapeutic strategy to prevent progression or to cure AD, to date no effective disease-modifying agent is available that can prevent, halt, or reverse the cognitive and functional decline of patients with AD. Several underlying etiologies to this failure are proposed. First, accumulating evidence from past trials suggests a preventive as opposed to therapeutic paradigm, and the precise temporal and mechanistic relationship of β-amyloid (Aβ) and tau protein should be elucidated to confirm this hypothesis. Second, we are in urgent need of revised diagnostic criteria to support future trials. Third, various technical and methodological improvements are required, based on the lessons learned from previous failed trials.
Collapse
Affiliation(s)
- Andreas Soejitno
- Department of General Medicine, National Hospital, Jl. Boulevard Famili Selatan Kav.1, Graha Famili, Surabaya, 60228, Indonesia,
| | | | | |
Collapse
|