1
|
Posukh OL, Maslova EA, Danilchenko VY, Zytsar MV, Orishchenko KE. Functional Consequences of Pathogenic Variants of the GJB2 Gene (Cx26) Localized in Different Cx26 Domains. Biomolecules 2023; 13:1521. [PMID: 37892203 PMCID: PMC10604905 DOI: 10.3390/biom13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
One of the most common forms of genetic deafness has been predominantly associated with pathogenic variants in the GJB2 gene, encoding transmembrane protein connexin 26 (Cx26). The Cx26 molecule consists of an N-terminal domain (NT), four transmembrane domains (TM1-TM4), two extracellular loops (EL1 and EL2), a cytoplasmic loop, and a C-terminus (CT). Pathogenic variants in the GJB2 gene, resulting in amino acid substitutions scattered across the Cx26 domains, lead to a variety of clinical outcomes, including the most common non-syndromic autosomal recessive deafness (DFNB1A), autosomal dominant deafness (DFNA3A), as well as syndromic forms combining hearing loss and skin disorders. However, for rare and poorly documented variants, information on the mode of inheritance is often lacking. Numerous in vitro studies have been conducted to elucidate the functional consequences of pathogenic GJB2 variants leading to amino acid substitutions in different domains of Cx26 protein. In this work, we summarized all available data on a mode of inheritance of pathogenic GJB2 variants leading to amino acid substitutions and reviewed published information on their functional effects, with an emphasis on their localization in certain Cx26 domains.
Collapse
Affiliation(s)
- Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.M.); (V.Y.D.); (M.V.Z.); (K.E.O.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Mahfood M, Chouchen J, Kamal Eddine Ahmad Mohamed W, Al Mutery A, Harati R, Tlili A. Whole exome sequencing, in silico and functional studies confirm the association of the GJB2 mutation p.Cys169Tyr with deafness and suggest a role for the TMEM59 gene in the hearing process. Saudi J Biol Sci 2021; 28:4421-4429. [PMID: 34354426 PMCID: PMC8324942 DOI: 10.1016/j.sjbs.2021.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.
Collapse
Key Words
- ARNSHL, autosomal recessive non-syndromic hearing loss
- Actb, Actin beta
- BAM, Binary Alignment Map
- BWA, Burrows-Wheeler Aligner
- C1QTNF9, C1q and TNF related 9
- Cx26, Connexin 26
- ESRRAP2, Estrogen-Related Receptor Alpha Pseudogene 2
- GJB2 gene
- GJB2, Gap Junction Protein Beta 2
- HHLA1, HERV-H LTR-Associating 1
- HL, Hearing loss
- KCNQ3, Potassium Voltage-Gated Channel Subfamily Q Member 3
- Missense mutation
- NGS, next generation sequencing
- NSHL, Non-syndromic hearing loss
- Non-syndromic hearing loss
- PROVEAN, Protein Variation Effect Analyzer
- PolyPhen-2, Polymorphism Phenotyping v2
- RFLP, restriction fragment length polymorphism
- ROH, runs of homozygosity
- RT-PCR, reverse transcription PCR
- RT-qPCR, quantitative reverse transcription PCR
- SAM, Sequence Alignment/Map
- SIFT, Sorting Intolerant From Tolerant
- SJL, Swiss Jim Lambert
- SPATA13, Spermatogenesis Associated 13
- ST3GAL1, ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 1
- TMEM59, Transmembrane Protein 59
- UAE, United Arab Emirates
- VariMAT, Variation and Mutation Annotation Toolkit
- WES, Whole exome sequencing
- Whole exome sequencing
- dpSNP, Single Nucleotide Polymorphism Database
- gEAR, gene Expression Analysis Resource
- gnomAD, genome aggregation database
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jihen Chouchen
- Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Walaa Kamal Eddine Ahmad Mohamed
- Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Missoum A. The role of gene GJB2 and connexin 26 in hearing impairment. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Tlili A, Al Mutery A, Kamal Eddine Ahmad Mohamed W, Mahfood M, Hadj Kacem H. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss. Genet Test Mol Biomarkers 2017; 21:686-691. [PMID: 29016196 DOI: 10.1089/gtmb.2017.0130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Mutations in the gap junction protein beta 2 (GJB2) gene are responsible for more cases of nonsyndromic recessive hearing loss than any other gene. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from United Arab Emirates (UAE). METHODS There were 50 individuals diagnosed with hereditary hearing loss and 120 healthy individuals enrolled in the study. The Sanger sequencing method was used to screen the GJB2 coding region in all affected individuals. The c.-1G>A variant was determined by the polymerase chain reaction-restriction fragment length polymorphism method in normal individuals. RESULTS AND DISCUSSION Nine cases with bi-allelic mutations and three cases with mono-allelic mutations were detected in 12 out of 50 patients (24%). The homozygous mutation c.35delG was identified as the cause of hearing loss in six participants (12%). The mutation c.506G>A was identified in three affected individuals (6%). The allelic frequency (14%) and low percentage of individuals that were homozygous (2%) for the c.35delG mutation suggest that there are other genes responsible for nonsyndromic deafness in the UAE population. The results reported here are a preliminary step in collecting epidemiological data regarding autosomal recessive nonsyndromic hearing loss related to GJB2 gene mutations among the UAE population. CONCLUSION The c.35delG mutation of the GJB2 gene is the most frequently seen causative mutation in the UAE and is followed by the p.Cys169Tyr mutation.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- 1 Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah, United Arab Emirates .,2 Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah , Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- 1 Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah, United Arab Emirates
| | | | - Mona Mahfood
- 1 Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah, United Arab Emirates
| | - Hassen Hadj Kacem
- 1 Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah, United Arab Emirates .,2 Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah , Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A, Ciruela F, Lakadamyali M, Pusch M, Estévez R. Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophys J 2017; 111:1429-1443. [PMID: 27705766 PMCID: PMC5052465 DOI: 10.1016/j.bpj.2016.08.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Volume-regulated anion channels (VRACs) play an important role in controlling cell volume by opening upon cell swelling. Recent work has shown that heteromers of LRRC8A with other LRRC8 members (B, C, D, and E) form the VRAC. Here, we used Xenopus oocytes as a simple system to study LRRC8 proteins. We discovered that adding fluorescent proteins to the C-terminus resulted in constitutive anion channel activity. Using these constructs, we reproduced previous findings indicating that LRRC8 heteromers mediate anion and osmolyte flux with subunit-dependent kinetics and selectivity. Additionally, we found that LRRC8 heteromers mediate glutamate and ATP flux and that the inhibitor carbenoxolone acts from the extracellular side, binding to probably more than one site. Our results also suggest that the stoichiometry of LRRC8 heteromers is variable, with a number of subunits ≥6, and that the heteromer composition depends on the relative expression of different subunits. The system described here enables easy structure-function analysis of LRRC8 proteins.
Collapse
Affiliation(s)
- Héctor Gaitán-Peñas
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | | | - Lara Laparra-Cuervo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Carles Solsona
- Unitat de Neurobiologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Alejandro Barrallo-Gimeno
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | | | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain.
| |
Collapse
|
6
|
Zonta F, Girotto G, Buratto D, Crispino G, Morgan A, Abdulhadi K, Alkowari M, Badii R, Gasparini P, Mammano F. The p.Cys169Tyr variant of connexin 26 is not a polymorphism. Hum Mol Genet 2015; 24:2641-8. [PMID: 25628337 PMCID: PMC4383868 DOI: 10.1093/hmg/ddv026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the GJB2 gene, which encodes the gap junction protein connexin 26 (Cx26), are the primary cause of hereditary prelingual hearing impairment. Here, the p.Cys169Tyr missense mutation of Cx26 (Cx26C169Y), previously classified as a polymorphism, has been identified as causative of severe hearing loss in two Qatari families. We have analyzed the effect of this mutation using a combination of confocal immunofluorescence microscopy and molecular dynamics simulations. At the cellular level, our results show that the mutant protein fails to form junctional channels in HeLa transfectants despite being correctly targeted to the plasma membrane. At the molecular level, this effect can be accounted for by disruption of the disulfide bridge that Cys169 forms with Cys64 in the wild-type structure (Cx26WT). The lack of the disulfide bridge in the Cx26C169Y protein causes a spatial rearrangement of two important residues, Asn176 and Thr177. In the Cx26WT protein, these residues play a crucial role in the intra-molecular interactions that permit the formation of an intercellular channel by the head-to-head docking of two opposing hemichannels resident in the plasma membrane of adjacent cells. Our results elucidate the molecular pathogenesis of hereditary hearing loss due to the connexin mutation and facilitate the understanding of its role in both healthy and affected individuals.
Collapse
Affiliation(s)
- Francesco Zonta
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Damiano Buratto
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy
| | - Giulia Crispino
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy, Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
| | - Anna Morgan
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Khalid Abdulhadi
- Audiology and Balance Unit, National Program for Early Detection of Hearing Loss, WH, Hamad Medical Corporation (HMC) Doha, Doha, Qatar
| | - Moza Alkowari
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ramin Badii
- Molecular Genetics Laboratory, Department of Laboratory of Medicine and Pathology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy, Medical Genetics, Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy and
| | - Fabio Mammano
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, 35131 Padova, Italy, Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy, CNR Institute of Cell Biology and Neurobiology, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
7
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|