1
|
Miao D, Ren J, Jia Y, Jia Y, Li Y, Huang H, Gao R. PAX1 represses canonical Wnt signaling pathway and plays dual roles during endoderm differentiation. Cell Commun Signal 2024; 22:242. [PMID: 38664733 PMCID: PMC11046865 DOI: 10.1186/s12964-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Paired box 1 (PAX1) is a transcription factor and essential for the development of pharyngeal pouches-derived tissues, including thymus. PAX1 mutations are identified in Severe Combined Immunodeficiency (SCID) patients with Otofaciocervical Syndrome Type 2 (OTFCS2). However, despite the critical roles of PAX1 in embryonic development and diseases, detailed insights into its molecular mode of action are critically missing. METHODS The repressing roles of PAX1 and SCID associated mutants on Wnt signaling pathway were investigated by luciferase reporter assays, qRT-PCR and in situ hybridization in HEK293FT, HCT116 cells and zebrafish embryos, respectively. Co-immunoprecipitation (co-IP) and western blotting assays were carried out to identify the molecular mechanisms underlying PAX1's role on Wnt signaling pathway. hESC based endoderm differentiation, flow cytometry, high-throughput sequencing data analysis, and qRT-PCR assays were utilized to determine the roles of PAX1 during endoderm differentiation. RESULTS Here, we show that PAX1 represses canonical Wnt signaling pathway in vertebrate cells. Mechanically, PAX1 competes with SUMO E3 ligase PIASy to bind to TCF7L2, thus perturbing TCF7L2 SUMOylation level, further reducing its transcriptional activity and protein stability. Moreover, we reveal that PAX1 plays dual roles in hESC-derived definitive and foregut/pharyngeal endoderm cells, which give rise to the thymus epithelium, by inhibiting Wnt signaling. Importantly, our data show PAX1 mutations found in SCID patients significantly compromise the suppressing ability of PAX1 on Wnt signaling. CONCLUSIONS Our study presents a novel molecular mode of action of PAX1 in regulation of canonical Wnt signaling and endoderm differentiation, thus providing insights for the molecular basis of PAX1 associated SCID, offering better understanding of the behavior of PAX1 in embryogenesis.
Collapse
Affiliation(s)
- Danxiu Miao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150000, China
| | - Jie Ren
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yihui Jia
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150000, China
- College of Public Health, Shantou University, Shantou, 515063, China
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
2
|
Wu W, Kong X, Jia Y, Jia Y, Ou W, Dai C, Li G, Gao R. An overview of PAX1: Expression, function and regulation in development and diseases. Front Cell Dev Biol 2022; 10:1051102. [PMID: 36393845 PMCID: PMC9649799 DOI: 10.3389/fcell.2022.1051102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
Transcription factors play multifaceted roles in embryonic development and diseases. PAX1, a paired-box transcription factor, has been elucidated to play key roles in multiple tissues during embryonic development by extensive studies. Recently, an emerging role of PAX1 in cancers was clarified. Herein, we summarize the expression and functions of PAX1 in skeletal system and thymus development, as well as cancer biology and outline its cellular and molecular modes of action and the association of PAX1 mutation or dysregulation with human diseases, thus providing insights for the molecular basis of congenital diseases and cancers.
Collapse
Affiliation(s)
- Weiyin Wu
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| | - Xiangjun Kong
- Department of Pharmacy, Xiang'an Hospital of Xiamen University, School of medicine, Xiamen University, Xiamen, China
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihui Jia
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| | - Weimei Ou
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| | - Cuilian Dai
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| | - Gang Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| | - Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
4
|
Abstract
Atonal homologue 8 (atoh8) is a basic helix-loop-helix transcription factor expressed in a variety of embryonic tissues. While several studies have implicated atoh8 in various developmental pathways in other species, its role in zebrafish development remains uncertain. So far, no studies have dealt with an in-depth in situ analysis of the tissue distribution of atoh8 in embryonic zebrafish. We set out to pinpoint the exact location of atoh8 expression in a detailed spatio-temporal analysis in zebrafish during the first 24 h of development (hpf). To our surprise, we observed transcription from pre-segmentation stages in the paraxial mesoderm and during the segmentation stages in the somitic sclerotome and not—as previously reported—in the myotome. With progressing maturation of the somites, the restriction of atoh8 to the sclerotomal compartment became evident. Double in situ hybridisation with atoh8 and myoD revealed that both genes are expressed in the somites at coinciding developmental stages; however, their domains do not spatially overlap. A second domain of atoh8 expression emerged in the embryonic brain in the developing cerebellum and hindbrain. Here, we observed a specific expression pattern which was again in contrast to the previously published suggestion of atoh8 transcription in neural crest cells. Our findings point towards a possible role of atoh8 in sclerotome, cerebellum and hindbrain development. More importantly, the results of this expression analysis provide new insights into early sclerotome development in zebrafish—a field of research in developmental biology which has not received much attention so far.
Collapse
|
5
|
Bozhokin MS, Sopova YV, Kachkin DV, Rubel AA, Khotin MG. Mechanisms of TGFβ3 Action as a Therapeutic Agent for Promoting the Synthesis of Extracellular Matrix Proteins in Hyaline Cartilage. BIOCHEMISTRY (MOSCOW) 2020; 85:436-447. [PMID: 32569551 DOI: 10.1134/s0006297920040045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hyaline cartilage is a nonvascular connective tissue covering the joint surface. It consists mostly of the extracellular matrix proteins and a small number of highly differentiated chondrocytes. At present, various techniques for repairing joint surfaces damage, for example, the use of modified cell cultures and biodegradable scaffolds, are under investigation. Molecular mechanisms of cartilage tissue proliferation have been also actively studied in recent years. TGFβ3, which plays a critical role in the proliferation of normal cartilage tissue, is one of the most important protein among cytokines and growth factors affecting chondrogenesis. By interacting directly with receptors on the cell membrane surface, TGFβ3 triggers a cascade of molecular interactions involving transcription factor Sox9. In this review, we describe the effects of TGFβ3 on the receptor complex activation and subsequent intracellular trafficking of Smad proteins and analyze the relation between these processes and upregulation of expression of major extracellular matrix genes, such as col2a1 and acan.
Collapse
Affiliation(s)
- M S Bozhokin
- Vreden Russian Scientific Research Institute of Traumatology and Orthopedics, St. Petersburg, 195427, Russia. .,Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Y V Sopova
- Vavilov Institute of General Genetics, Russian Academy of Science, St. Petersburg Branch, St. Petersburg, 199034, Russia.,St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia.,St. Petersburg State University, Laboratory of Amyloid Biology, St. Petersburg, 199034, Russia
| | - D V Kachkin
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia.,St. Petersburg State University, Laboratory of Amyloid Biology, St. Petersburg, 199034, Russia
| | - A A Rubel
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia.,St. Petersburg State University, Laboratory of Amyloid Biology, St. Petersburg, 199034, Russia
| | - M G Khotin
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| |
Collapse
|
6
|
Apparent mineralocorticoid excess caused by a novel mutation in 11β-hydroxysteroid dehydrogenase type 2 gene. J Hypertens 2017; 35:647-650. [PMID: 28121843 DOI: 10.1097/hjh.0000000000001201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|