1
|
Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R. Recent Advances in Age-Related Macular Degeneration Therapies. Molecules 2022; 27:molecules27165089. [PMID: 36014339 PMCID: PMC9414333 DOI: 10.3390/molecules27165089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.
Collapse
Affiliation(s)
- Marie Fabre
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Lou Mateo
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Diana Lamaa
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, 30 Avenue De La Voie Romaine, 06000 Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), UMR 7284 and INSERM U 1081, Université Côte d’Azur, CNRS 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Cyril Ronco
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Rachid Benhida
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Department of Chemical and Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohamed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Correspondence: (L.D.); (C.R.); (R.B.)
| |
Collapse
|
2
|
Arjunan P, Swaminathan R. Do Oral Pathogens Inhabit the Eye and Play a Role in Ocular Diseases? J Clin Med 2022; 11:2938. [PMID: 35629064 PMCID: PMC9146391 DOI: 10.3390/jcm11102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fascinatingly, the immune-privileged healthy eye has a small unique population of microbiota. The human microbiome project led to continuing interest in the ocular microbiome. Typically, ocular microflorae are commensals of low diversity that colonize the external and internal sites of the eye, without instigating any disorders. Ocular commensals modulate immunity and optimally regulate host defense against pathogenic invasion, both on the ocular surface and neuroretina. Yet, any alteration in this symbiotic relationship culminates in the perturbation of ocular homeostasis and shifts the equilibrium toward local or systemic inflammation and, in turn, impaired visual function. A compositional variation in the ocular microbiota is associated with surface disorders such as keratitis, blepharitis, and conjunctivitis. Nevertheless, innovative studies now implicate non-ocular microbial dysbiosis in glaucoma, age-related macular degeneration (AMD), uveitis, and diabetic retinopathy. Accordingly, prompt identification of the extra-ocular etiology and a methodical understanding of the mechanisms of invasion and host-microbial interaction is of paramount importance for preventative and therapeutic interventions for vision-threatening conditions. This review article aims to explore the current literature evidence to better comprehend the role of oral pathogens in the etiopathogenesis of ocular diseases, specifically AMD.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Radhika Swaminathan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
3
|
The sterility, stability and efficacy of repackaged ziv-aflibercept for intravitreal administration. Sci Rep 2022; 12:2971. [PMID: 35194061 PMCID: PMC8863784 DOI: 10.1038/s41598-022-06831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
To evaluate the sterility, stability, and efficacy of repackaged ziv-aflibercept in 1-mL plastic tuberculin syringes for intravitreal injection after storage for up to 90 days at controlled (4 °C) and ambient (25.8 °C) temperature. A total of 168 tuberculin-type 1-mL syringes were prepared containing ziv-aflibercept (100 mg/4 mL). Samples were stored at 4 °C and 25.8 °C for 0, 3, 7, 14, 21, 28, 60, and 90 days. At each time point, four samples were evaluated for the stability and binding affinity of anti-VEGF to VEGF (efficacy) using enzyme-linked immunosorbent assays (ELISAs). All samples were analyzed for microbial growth. No microbial growth was obtained from any of the ziv-aflibercept samples during each time point, indicating that the repackaged ziv-aflibercept stored at 4 °C and 25.8 °C remained sterile. ELISA analysis revealed no significant decrease in concentration, and binding affinity was observed, indicating that the stability and efficacy were preserved. However, the concentration of ziv-aflibercept decreased less than the minimum expected concentration of 8 ng/mL after 60 days at 4 °C and after 30 days at 25.8 °C. The repackaged anti-VEGF drug ziv-aflibercept does not lose stability or efficacy and remains uncontaminated if prepared under sterile conditions and stored at 4 °C for up to 60 days or stored at 25.8 °C for up to 30 days.
Collapse
|
4
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Suri R, Neupane YR, Mehra N, Nematullah M, Khan F, Alam O, Iqubal A, Jain GK, Kohli K. Sirolimus loaded chitosan functionalized poly (lactic-co-glycolic acid) (PLGA) nanoparticles for potential treatment of age-related macular degeneration. Int J Biol Macromol 2021; 191:548-559. [PMID: 34536476 DOI: 10.1016/j.ijbiomac.2021.09.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022]
Abstract
The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route. Both the nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR and XRD analysis. Quality by Design (QbD) approach was employed during the preparation of nanoparticles and the presence of chitosan coating was confirmed through thermogravimetric analysis and contact angle studies. Cationic polymer modification showed sustained in-vitro SIR release and enhanced ex-vivo scleral permeation and penetration. Further, SIR-CH-PLGA-NP revealed enhanced cellular uptake and thus, reduced lipopolysaccharide (LPS)-induced free-radicals generation by RAW 264.7 cells. The prepared nanoparticles were devoid of residual solvent and were found to be safe in HET-CAM analysis, RBCs damage analysis and histopathology studies. Moreover, high anti-angiogenic potential was observed in SIR-CH-PLGA-NP compared with SIR-PLGA-NP in chorioallantoic membrane (CAM) test. Overall, the current work opens up an avenue for further investigation of CH-PLGA-NP as SIR nanocarrier in the treatment of AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore.
| | - Nikita Mehra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Liu Y, Bell BA, Song Y, Kim HJ, Sterling JK, Kim BJ, Poli M, Guo M, Zhang K, Rao A, Sparrow JR, Su G, Dunaief JL. Intraocular iron injection induces oxidative stress followed by elements of geographic atrophy and sympathetic ophthalmia. Aging Cell 2021; 20:e13490. [PMID: 34626070 PMCID: PMC8590099 DOI: 10.1111/acel.13490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/24/2023] Open
Abstract
Iron has been implicated in the pathogenesis of age‐related retinal diseases, including age‐related macular degeneration (AMD). Previous work showed that intravitreal (IVT) injection of iron induces acute photoreceptor death, lipid peroxidation, and autofluorescence (AF). Herein, we extend this work, finding surprising chronic features of the model: geographic atrophy and sympathetic ophthalmia. We provide new mechanistic insights derived from focal AF in the photoreceptors, quantification of bisretinoids, and localization of carboxyethyl pyrrole, an oxidized adduct of docosahexaenoic acid associated with AMD. In mice given IVT ferric ammonium citrate (FAC), RPE died in patches that slowly expanded at their borders, like human geographic atrophy. There was green AF in the photoreceptor ellipsoid, a mitochondria‐rich region, 4 h after injection, followed later by gold AF in rod outer segments, RPE and subretinal myeloid cells. The green AF signature is consistent with flavin adenine dinucleotide, while measured increases in the bisretinoid all‐trans‐retinal dimer are consistent with the gold AF. FAC induced formation carboxyethyl pyrrole accumulation first in photoreceptors, then in RPE and myeloid cells. Quantitative PCR on neural retina and RPE indicated antioxidant upregulation and inflammation. Unexpectedly, reminiscent of sympathetic ophthalmia, autofluorescent myeloid cells containing abundant iron infiltrated the saline‐injected fellow eyes only if the contralateral eye had received IVT FAC. These findings provide mechanistic insights into the potential toxicity caused by AMD‐associated retinal iron accumulation. The mouse model will be useful for testing antioxidants, iron chelators, ferroptosis inhibitors, anti‐inflammatory medications, and choroidal neovascularization inhibitors.
Collapse
Affiliation(s)
- Yingrui Liu
- Department of Ophthalmology The Second Hospital of Jilin University Changchun China
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Hye J. Kim
- Department of Ophthalmology Harkness Eye Institute Columbia University Medical Center New York New York USA
| | - Jacob K. Sterling
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Benjamin J. Kim
- Department of Ophthalmology Scheie Eye Institute University of Pennsylvania Philadelphia Pennsylvania USA
| | - Maura Poli
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Michelle Guo
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Kevin Zhang
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Aditya Rao
- Department of Molecular Life Science University of Pennsylvania Philadelphia Pennsylvania USA
| | - Janet R. Sparrow
- Department of Ophthalmology Harkness Eye Institute Columbia University Medical Center New York New York USA
| | - Guanfang Su
- Department of Ophthalmology The Second Hospital of Jilin University Changchun China
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
7
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
9
|
Suri R, Neupane YR, Jain GK, Kohli K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur J Pharm Sci 2020; 153:105489. [PMID: 32717428 DOI: 10.1016/j.ejps.2020.105489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression. Hitherto, there is no ideal therapy which can cure the disease completely, and targeting the posterior segment of the eye is yet another challenge. The purpose of this review is to summarize the recent advances in the management and treatment stratagems (therapies, delivery systems and diagnostic tools) pertaining to AMD viz. molecular targeting, stem cell therapy, nanotechnology and exosomes with special reference to newer technologies like artificial intelligence and 3D printing. Furthermore, the role of diet and nutritional supplements in the prevention and treatment of the disease has also been highlighted. The alarming increase in the said disorder around the globe demands exhaustive research and investigations in the treatment zone. This review thus additionally directs the attention towards the challenges and future perspectives of different treatment approaches for AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
10
|
Mimicking Peroxidase Activity by a Manganese(II) Complex Involving a New Asymmetric Tetradentate Ligand Containing Both Amino and Imino Groups. J CHEM-NY 2015. [DOI: 10.1155/2015/963152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The asymmetric ligand (E)-4-bromo-2-(((2-((5-bromo-2-hydroxybenzyl)(methyl)amino)ethyl)imino)methyl)phenol has been prepared by a novel seven-step route. All organic compounds isolated in each step have been characterised by elemental analysis, infrared and1H NMR spectroscopy, and mass spectrometry. Interaction of this ligand with manganese has been investigated employing an electrochemical method. This method leads to the formation of a neutral manganese(II) complex7in high yield and purity. The complex has been thoroughly characterised by elemental analysis, infrared spectroscopy, mass spectrometry, magnetic susceptibility measurements, and cyclic voltammetry. Complex7behaves as peroxidase mimic in the presence of the water-soluble trap ABTS, probably due to its ease to coordinate the substrate molecule.
Collapse
|